

BAB II TINJAUAN PUSTAKA

II.1 Uraian Proses

PT Petrokimia Gresik merupakan pabrik pupuk terlengkap di Indonesia yangmampu menghasilkan produk pupuk dan produk non pupuk serta bahan kimia lainnya. Secara umum, PT Petrokimia Gresik dibagi menjadi 3 unit produksi, yaitu unit produksi I A dan I B, unit produksi II A dan II B serta unit produksi III A dan III B. Departemen produksi IIIA merupakan unit produksi yang memproduksi bahan baku hampir di seluruh unit produksi PT Petrokimia Gresik. Unit produksi III A menghasilkan produk berupa asam sulfat, asam fosfat, dan ammonium sulfat untuk menghasilkan produk lain seperti pupuk Phonska, pupuk ZA, dan AlF3. Unit produksi IIIA dibagai menjadi 3, yaitu :

- a. Unit Asam Sulfat
- b. Unit Asam Fosfat
- c. Unit ZA

Kapasitas produksi unit III A

sebagai berikut:

Tabel II. 1 Kapasitas Produksi Departemen III A

Unit Produksi	Bahan Baku	Kapasitas Produksi
Pupuk ZA II	Amoniak, Karbon	810 Ton/ Hari
	Dioksida, Asam	
	Sulfat & Gypsum	
Asam Fosfat III A	Batuan Fosfat,	610 Ton/Hari
(100% P2O5)	Asam Sulfat	

Asam Sulfat III A	Belerang	1800 Ton/Hari
(98% H2SO4)		

Sementara itu, untuk utilitas pada unit produksi III A dapat menghasilkan steam dan listrik dengan kapasitas 100 Ton/jam dan 18 MW.

Tabel II. 2 Unit Utilitas Produksi III A

Unit Utilitas	Produk	Kapasitas Produksi
Gas Boliler	Steam	100 Ton/jam
Steam Turbine Generator	Listrik	18 MW

II.1.1 Unit Asam Sulfat

II.1.1.1 Bahan Baku

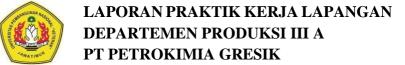
Bahan baku pembuatan asam sulfat adalah sulfur padat yang berasal dari Aceh, Kanada, dan Timur Tengah. Penyimpanan sulfur padat di dalam *open storage* tank berkapasitas 75000 Ton. Sulfur yang diolah menjadi asam sulfat adalah 600 Ton/hari. Spesifikasi bahan baku sulfur padat yaitu sebagai berikut:

1. Sulfur padat

a. State : Flake / Powder / Granular

b. Purity : minimum 99,8 % dry basis

c. H2O : max. 2 % wt


d. Ash : max. 0,03 %

e. Acidity: max. 0,23 % wt

f. NaCl : max. 82,5 ppm

g. Fe : max. 30 ppm

h. Density : 1,3 Kg/m3 rbon, NaCl, Fe, K, Na.

2. Dillution water menggunakan

Demineralyzed Watera. pH: 7,5 ~ 9,5

b. Conductivity : max 10 μ mhos

c. Total Hardness : 0 ppm

3. Steam specification

a. Pressure : 36 Kg/cm²g

b. Temperatur :

4. Katalis Vanadium Penta Oksida

a. Manufacture : Topsoe

b. V2O5 purity : 7,5 %

5. Bahan Penolong

a. Kapur powder : aktif minimum70%

b. Diatomaceous Earth : $SiO_2 \ge 88,5\%$; $Al_2O_3 \le 4\%$

; Fe2O3 ≤ 1,45%Konsumsi Bahan Penolong :

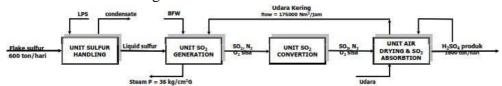
• CaO untuk menetralkan free acid melter 0,33 t/d.

• CraO untuk larutan precoat filter 25 Kg/preparasi

• Diatomaceous Earth 180 Kg/preparasi

 Inert Ceramic Balls total ± 43 m3 sebagai pelindung katalis di Converter 30-R1201 untuk Bed I-IV (bottom & top katalis)

II.1.1.2 Proses Produksi Asam Sulfat


Pabrik asam sulfat di PT Petrokimia Gresik beroperasi satu stream dengan kapasitas 1800 ton/hari melalui proses Hitachi Zosen/ T.J. Browder doublecontact dan doubleabsorbtion (DC/DA). Secara umum, proses pembuatan asam sulfat dibagimenjadi 5 macam yaitu *sulphur handling*, unit

SO₂ generation, SO₂ convertion, Drying air and SO₃ absorbtion, H₂SO₄storage and distribution.

Uraian Proses:

1. Unit Sulfur Handling

Gambar II. 1 Diagram Alir Proses Produksi Asam Sulfat

Pencairan belerang dengan steam coil flake dengan tekanan steam yang dibutuhkan 5kg/cm²g dan Temperatur smelter dijaga pada 125°C serta kadarsulfur 90.9

2. Unit SO₂ Generation

Mereaksikan sulfur dengan oksigen/udara

Reaksi:
$$S + O2 \rightarrow SO3 + 70.96 \times 10^{3 \text{ kcal}}/\text{kgmol}$$

Suhu didalam *furnace* kurang dari 1042 °C dan panas yang dihasilkan untuk membuat steam, dan selanjutnya digunakan untuk memutar turbin. Listrik yang dihasilkan 20 MW.

3. Unit SO₂ Convertion

Mereaksikan SO2 dengan O2 menjadi SO3

Reaksi :
$$SO2 + 1/2O2 \rightarrow SO3 + 33.49 \times 10^{3 \text{ kcal}}/\text{kgmol}$$

Suhu masuk reaktor pada masing masing bed:

Bed I $= 430^{\circ}$ C

Bed II $= 440 \, ^{\circ}\text{C}$

Bed III $= 430 \, ^{\circ}\text{C}$

Bed IV = 420 °C

Konversi Pada masing-masing Bed:

Bed I = 60%

Bed II = 27%

Bed III = 7%

Bed IV = 5.73%

4. Unit Air Drying & SO3 Absorbtion

Air yang terdapat dalam Udara diserap dengan menggunakan H2SO4 pekat didalam menara pengering, Sedangkan didalam menara penyerap menyerap gas SO3 dengan air (H2O) menjadi H2SO4

Reaksi Di Menara Penyerap : SO3 + H2O → H2SO4

Temperatur Absorpsi dijaga 80°C dan konsentrasi H2SO4 dijaga pada 98.5 %. Untuk Menjaga temperatur produk (H2SO4) maka panas yang terjadi dilewatkan HE untuk didinginkan.

II.1.2 Unit Asam Fosfat

II.1.2.1 Bahan Baku

1. Phospate Rock

a. P2O5 : 33%

b. Pb : 1,411 gr/mL

c. H2O : max 25% wt

d. CaO : 52,1% wt

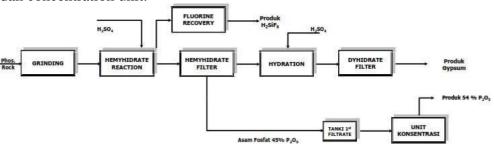
e. SiO_2 : 2,5 – 5,0% wt

f. SO3 : max 2% wt

g. F : 4% wt

h. Impuritis: 2,9%

2. Asam Sulfat Technical Grade


a. Kadar asam sulfat : min 98,0%

b. Spesific grafity : 1,82 - 1,824

c. Impurities : 115 ppm

II.1.2.2 Proses Produksi Asam Fosfat

Pabrik asam fosfat di PT Petrokimia Gresik menggunakan teknologi *Nissan C Process* dengan kapasitas produksi sebesar 610 Ton/hari. Proses pembuatan asam sulfat berbasis reaksi hemihidrate-dihidrate. Tahapan pembuatan asam fosfat antara lain : rock grinding, reaction unit and calcium sulfate hemihydrate, hydration unit and Ca2O4 dihydrate, flourine recovery, dan concentration unit.

Gambar II. 2 Diagram Alir Produksi Asam Fosfat

Uraian Proses:

Phosphate rock sebagai bahan baku utama pada pembuatan asam fosfat dihancurkan dalam grinder yang kemudian dihaluskan dengan screen and ball mill untuk umpan reaksi.Proses reaksi antara phosphate rock dengan asam sulfat menjadi fosfat terjadi dalam reaktor dengan suhu 90-104°C.

Reaksi:

 $Ca10F2(PO4)6 + 10\ H2SO4 + 5\ H2O \rightarrow 6\ H3PO4 + 10\ EaSO4._{2}\ H2O + 2\ HF$

Selanjutnya dilakukan penyerapan SiF4 dan HF dengan menggunakan larutanH2SiF6 encer sehingga menjadi H2SiF6 dengan konsentrasi 18-20%.

Reaksi:

$$3 H2SiF6 + 2 H2O \rightarrow 2 H2SiF6 + SiO2$$

 $6 HF + SiO2 \rightarrow H2SiF6 + 2 H2O$

Hemyhidrate slurry melalui proses filtrasi dimana filtrat dari filtrasi kedua digunakan sebagai returnacid . Kemudian dilanjutkan dengan proses hidrasi hemyhidrate cake dengan asam sulfat. Filtrat dari proses filtrasi dehydrateslurry digunakan untuk pencucian pada hemyfilter sedangkan cake dijadikan produk berupa phosphogypsum. Hasil filtrat yang awalnya memiliki kadar P2O5 45% dipekatkan menjadi asam fosfat pekat 54%.

II.1.3 Unit Ammonium Sulfat (ZA)

II.1.3.1 Bahan Baku

Bahan baku pembuatan ZA II ini antara lain adalah ammonia, karbondioksida, phospogypsum dan asam sulfat. Spesifikasinya sebagai berikut:

1. Ammonia (NH3)

a. Bentuk : Cair, Gas

b. Suhu : -33°C (Cair), 35-45°C

c. Tekanan : Atmosferik (Cair), 1.2 – 1,3 kg/cm²

d. Kandungan: 99%-99.5%

e. Sumber : Departemen I (gas dan cair), Departemen II (cair)

2. Karbondioksida (CO2)

a. Bentuk : Gas

b. Suhu : 35°C

c. Tekanan : 0.44 kg/cm²

d. Kandungan: 99% min

e. Sumber : Departemen I

3. Asam Sulfat

a. Bentuk : Cair

b. Suhu : 34°C

c. Tekanan : atmosferik

d. Kandungan: 98.5%

4. Fosfo Gypsum

a. Bentuk : Padat

b. CaSO4.2H2O: 97% min

c. F total : 0.69% min.

d. P2O5 Total : 0.33% min

e. CaO: 3.69% min

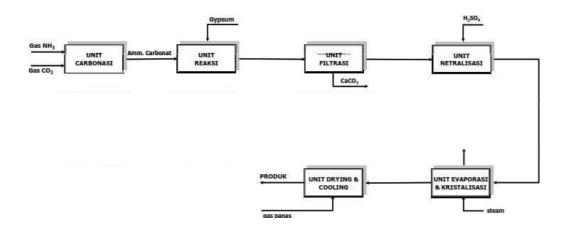
5. Anti Cacking (AFFA / Anti Free Flowing Agent)

a. Bentuk: Padatan

b. Ketampakan: Kuning-Coklat

c. SG (Spesific Gravity): 0.800-0,950 (70°C)

LAPORAN PRAKTIK KERJA LAPANGAN DEPARTEMEN PRODUKSI III A PT PETROKIMIA GRESIK


d. Viskositas : 50 cps pada 70°C

e. Titik leleh: 60°C

II.1.3.2 Proses Produksi Ammonium Sulfat (ZA)

Pabrik amonium sulfat (ZA II) dapat memproduksi amonium sulfat dengan kapasitas 813 Ton/hari dengan kadar air sebanyak 0,15%. Proses pembuatan amonium fosfat dibagi menjadi 4 unit yaitu unit reaksi, unit filtrasi. Unit konsentrasi, dan *unit finishing*. Proses pembuatan amonium sulfat dibagi menjadi beberapa unit yaitu unit *carbonation* /pembuatan amonium karbonat, unit reaksi dan *gas scrubbing*, unit filtrasi,unit netralisasi, unit evaporasi dan kristalisasi, unit pengeringan dan pendinginan, danunit pengantongan.

Gambar II. 3 Diagram Alir Proses Produksi Ammonium Sulfat Uraian Proses :

1. Karbonasi.

Peralatan utama yang digunakan adalah carbonation tower yangberfungsi dalam pembuatan amonium karbonat (Carbonat liquor).

Reaksi utamanya:

$$2NH3 + CO2 + H2O \rightarrow (NH4)2CO2 + Q$$

Suhu gas CO2 yang terdapat didalam tube di turunkan sampai 27°C sedangkan amonia cair diubah menjadi gas dengan memasukkanya

kedalam sisi shell CO2 Chiller. Gas tersebut kemudian dipanasan lebih lanjut sampai suhu 27°C dan masuk kedalam Carbonation tower, sedangkan CO2nya ditekandengan Compressor sampai 1,2 kg/cm2 suhu +80°C masuk Tower.

Produk larutan (Carbonat Liquor) dari dasar tower dialirkan ke Storage Tank sedangkan gas yang lolos di bagian atas diserap oleh Scrubber Liquor dan yang tak terserap dialirkan ke Reaksi dan Penyerapan Gas.

2. Reaksi dan penyerapan gas.

Peralatan utama yang dipakai adalah Reaction Vessel berpengaduk. Amonium karbonat dan pospho gypsum membentuk Reaction Magma (slurry)dan Gas Srubber menyerap gas NH3 dan CO2 yang lolos di Carbonation, Reaction, Filtration & Neutralization

Reaksi:

$$(NH4)2CO3 + CaSO4.2H2O \rightarrow (NH4)2SO4 + CaCO3 + 2H2O - Q$$

Gypsum dari Pa Plant masuk ke atas Reaktor I suhu +65°C melalui Vortex Mixer dicampur dengan karbonat liquor sedangkan Reaktor berikutnyasuhu operasi 70-73°C dan dari bawah Reaktor slurry dikirim ke Filtrasi

Gas-gas yang mengandung NH3 dan CO2 masuk bawah Scrubber dikontakkan CO2 kondensat /proses kondensat dari atas. Scrubber liquor selanjutnya dikirim ke Karbonation Tower sedangkan sisa gas yang terserap dibuang ke atmosfer melalui Stack.

3. Filtrasi.

Dalam tahapan ini tidak ada reaksi pemisahan larutan ZA

denganpadatan kapur. Kapur yang masih berada dalam larutan diendapkan di bejana pengendap kapur(Chalk Settler). Pada Primary Filter larutan ZA dari Reaktor terakhir dipisahkan filtrat (strong liquor) sebagai produk filter dan cake yang akan dilarutkan dengan weak liquor untuk diumpankan ke Secondary Filter

Pada Secondary Filter terjadi proses pemisahan cake (kapur) dengan filtratnya berupa weak liquor yang dipakai sebagai pelarut cake filtrat pertamadan untuk pencuci cake serta pencuci kain pada filter pertama. Strong liquor dari Primary Filter masih mengandung solid sehingga diendapkan dulu dalam Settler sampai terjadi pengendapan pada dasar Settler sebagai sludge dan overflownya merupakan produk strong liquor untuk dikirim ke Liquor StorageTank .

4. Neutralisasi.

Reaksi yang terjadi:

$$NH3 + H2SO4 \rightarrow (NH4)2SO4$$

 $(NH4)2CO3 + H2SO4 \rightarrow (NH4)2SO4 + H2O + CO2$

$$2NH4HCO3 + H2SO4 \rightarrow (NH4)2SO4 + 2H2O + CO2$$

Pada tahapan ini kelebihan NH3 dan ammonium karbonat dinetralkan dengan asam sulfat menjadi ZA tambahan, sedangkan CO2 terlepas. Hasil dari reaksi-reaksi tersebut membentuk ammonium sulfat tambahan yang selanjutnya dengan pompa dikirim ke Evaporator dan gas CO2 yang lepas dihisap dengan blower untuk dibawa ke *Scrubber*.

5. Evaporasi dan kristalisasi.

Peralatan utamanya adalah Evaporator Crystalizer jenis Calandria yang berfungsi menguapkan H2O dari larutan ZA supaya

larutan menjadi pekat hingga terbentuk kristal ammonium sulfat sedangkan untukmemisahkan kristal dan larutannya digunakan Centrifuge.

Larutan ZA masuk Evaporator I (P = 0,93 kg/cm².A) sisi tube untuk memekatkan sampai mendekati jenuh pada suhu 98°C dengan pemanas steam di sisi shell. Slurry dari Evaporator I selanjutnya dikirim ke Centrifuge untuk memisahkan kristal dari larutannya. Kristal basah dikirim ke unit Dryer Heat Exchanger sedangkan larutan/mother liquor disirkulasi ke Evaporator III.

6. Pengeringan dan pendinginan kristal.

Pada tahapan ini kristal ZA basah dari Centrifuge dikeringkan serta didinginkan di Rotary Dryer dan ditambah Anti Cacking/Armoflo 11 sedangkan pengeringan dengan panas yang berasal dari pembakaran LSFO.Kristal basah dikeringkan dengan hembusan udara panas dari Furnace suhu 162°C pada bagian Drying sedangkan dibagian Heat Exchanger kristal didinginkan dengan udara dari Heat Exchanger Air Feed Fan.

Produk kristal selanjutnya dikirim ke pengantongan atau Bulk Storage dengan spesifikasi : bentuk kristal, ukuran 70% tertahan tyler mesh 30, kadar nitrogen 21% berat, asam bebas 0,1% berat dan H2O 0,15% berat maksimum.

7. Penampungan Produk

Produk ZA kering yang keluar dari dryer dengan Bucket elevator dikirim ke bagian Hopper dan diangkut dengan belt conveyor menuju bagian pengantongan dan untuk selanjutnya dilakukan proses pengepakan.

r