BAB 1

PENDALUHUAN

1.1 Latar Belakang

Pencemaran tanah oleh logam berat terutama timbal (Pb), merupakan masalah lingkungan yang signifikan dan mendesak untuk ditangani di Indonesia mengingat dampaknya yang luas terhadap ekosistem, kesehatan masyarakat, dan keberlanjutan pertanian. Sumber utama kontaminasi Pb di tanah ini meliputi berbagai aktivitas industri yang tidak dikelola dengan baik, serta praktik pertanian yang tidak berkelanjutan yang sering kali mengabaikan prinsip-prinsip keberlanjutan. Penggunaan pupuk dan pestisida yang mengandung logam berat dapat secara signifikan meningkatkan kadar Pb dalam tanah. Selain itu, pencemaran ini dapat menyebabkan kerusakan jangka panjang pada struktur tanah, mengurangi kesuburan, dan mengganggu proses biogeokimia yang penting bagi kesehatan ekosistem (Hindarwati et al., 2023). Paparan timbal (Pb) pada manusia dapat menimbulkan berbagai efek negatif pada kesehatan yaitu pada saraf pusat dan saraf tepi (menurunkan daya konsentrasi, gangguan tidur dan kecemasan), sistem kardiovaskuler (menyebabkan hipertensi), sistem hematopoetik (anemia), ginjal, pencernaan, sistem reproduksi, dan bersifat karsinogenik yang dapat mengakibatkan masalah kesehatan jangka panjang bagi individu yang terpapar, termasuk gangguan perkembangan pada anak-anak dan peningkatan risiko penyakit kronis pada orang dewasa (Soelistyoningsih & Mau, 2017). Selain itu, Pb yang terakumulasi dalam tanaman dapat masuk ke dalam rantai makanan, meningkatkan risiko bagi konsumen akhir yang mengonsumsi produk pertanian yang terkontaminasi, sehingga menciptakan masalah kesehatan masyarakat yang lebih luas. Penelitian menunjukkan bahwa bahkan kadar Pb yang rendah dalam makanan dapat memiliki efek merugikan, terutama pada anak-anak yang lebih rentan terhadap keracunan logam berat. Oleh karena itu, penting untuk mengidentifikasi dan mengatasi sumber pencemaran ini sebelum dampaknya menjadi lebih parah (Fitrianah et al., 2017).

Berbagai teknik remediasi telah dikembangkan untuk mengatasi kontaminasi timbal (Pb) di tanah. Salah satu metode yang cukup sering digunakan adalah fitoremediasi, yaitu pemanfaatan tanaman hiperakumulator untuk menyerap, menstabilkan, atau mentranslokasikan logam berat dari tanah, Namun masih diperlukan penelitian lebih lanjut guna mengidentifikasi jenis tanaman yang potensial dalam menyerap Pb serta memahami mekanisme yang terlibat dalam proses tersebut (Hayati & Anita Zahara, 2024). Teknik remediasi lain untuk mengatasi kontaminan timbal pada tanah yaitu aerasi, yaitu suatu proses penambahan oksigen dalam air atau tanah dengan cara memberikan gelembunggelembung halus udara (Yuniarti et al., 2019). Metode aerasi telah diidentifikasi sebagai teknik yang dapat meningkatkan efektivitas remediasi tanah yang terkontaminasi logam berat.

Efektivitas metode aerasi dalam meningkatkan kualitas tanah sangat dipengaruhi oleh berbagai sifat fisik tanah, termasuk tekstur, struktur, porositas, dan permeabilitas. Sifat-sifat ini memainkan peran penting dalam menentukan seberapa baik udara dapat bergerak melalui tanah yang mempengaruhi distribusi oksigen di dalam tanah serta aktivitas mikroba yang berperan dalam proses. Dalam penelitian terdahulu, telah dilakukan penambahan pasir ke dalam tanah untuk meningkatkan tingkat porositas, sehingga meningkatkan kemampuan tanah dalam menyerap dan mempertahankan udara. Dengan meningkatkan porositas, tanah dapat lebih efektif dalam mendistribusikan oksigen ke seluruh bagian tanah, yang sangat penting untuk mendukung aktivitas mikroba yang berfungsi dalam proses dekomposisi dan remediasi (Yani & Murtilaksono, 2016). Sebaliknya, tanah bertekstur halus (berlempung) memiliki porositas dan permeabilitas rendah, yang dapat menghambat pergerakan udara dan mengurangi efektivitas aerasi. Selain itu, struktur tanah yang baik dengan agregat stabil dapat meningkatkan ruang pori makro, mendukung aerasi yang efektif (Hartanto et al., 2022). Dengan mempertimbangkan faktor-faktor tersebut, penting untuk mengevaluasi bagaimana aerasi dapat diterapkan secara efektif pada tanah yang memiliki karakteristik unik dalam hal struktur, porositas, dan permeabilitas.

Tanah Inseptisol merupakan ordo tanah yang banyak tersebar di Indonesia yang memiliki karakteristik seperti kandungan bahan organik rendah, struktur kurang stabil, serta porositas yang mempengaruhi aerasi tanah (Muyassir et al., 2012). Aerasi tanah yang baik penting untuk respirasi akar dan aktivitas mikroba yang berperan dalam siklus nutrisi tanaman (Maimuna La Habi & Aminudin Umasangaji, 2021). Pada penelitian Harahap et al., (2022), menunjukkan bahwa pemberian bahan organik seperti pupuk dan kompos granular juga dapat meningkatkan porositas tanah, mengurangi kepadatan, dan memperbaiki aerasi. Namun, sebaliknya juga pengelolaan lahan yang buruk menyebabkan penurunan kualitas tanah, menghambat aerasi, dan meningkatkan kepadatan tanah. Dalam konteks tanah, yang memiliki struktur belum stabil dan kandungan bahan organik rendah, peningkatan aerasi melalui pasir dapat membantu mengurangi pemadatan dan meningkatkan difusi oksigen.

Penelitian bertujuan untuk mengeksplorasi bagaimana sifat fisik tanah, khususnya peran pasir dalam meningkatkan aerasi, mempengaruhi efektivitas metode aerasi dalam stabilisasi Pb pada tanah terkontaminasi. Penambahan pasir dapat meningkatkan porositas tanah, memperbaiki sirkulasi udara, dan mendukung aktivitas mikroba yang berperan dalam proses stabilisasi Pb. Namun, belum banyak penelitian yang mengkaji secara spesifik hubungan antara karakteristik fisik tanah (tekstur, struktur, porositas) dan durasi aerasi terhadap mekanisme stabilisasi logam berat seperti Pb pada tanah Inseptisol. Oleh karena itu, penelitian ini difokuskan untuk menjawab hal tersebut.

1.2 Rumusan Masalah

Adapun rumusan masalah penelitian ini adalah sebagai berikut.

- 1. Bagaimana karakteristik fisik tanah Inseptisol dan pasir yang meliputi tekstur, struktur, porositas, dan kadar air sebelum dan sesudah aerasi?
- 2. Bagaimana pengaruh penambahan pasir dan variasi durasi aerasi terhadap stabilisasi ion Pb?
- 3. Bagaimana periode aerasi berpengaruh dalam proses stabilisasi ion Pb dalam tanah?

1.3 Tujuan Penelitian

Adapun tujuan penelitian ini adalah sebagai berikut.

- 1. Menganalisis karakteristik fisik tanah dan pasir meliputi tekstur, struktur, porositas, dan kadar air sebelum dan sesudah aerasi.
- 2. Mengetahui pengaruh penambahan pasir dan variasi durasi aerasi terhadap stabilisasi ion Pb.
- 3. Menganalisis pengaruh periode aerasi dalam proses stabilisasi ion Pb dalam tanah.

1.4 Manfaat Penelitian

- Memberikan pemahaman yang lebih mendalam bagi peneliti dan praktisi lingkungan mengenai metode yang berkelanjutan dan efisien dalam mengatasi pencemaran tanah.
- Menjadi landasan bagi pengembangan kebijakan pemerintah serta praktik industri yang lebih baik dalam pengelolaan dan rehabilitasi tanah terkontaminasi.
- 3. Menyediakan data ilmiah dan dasar empiris mengenai efektivitas metode aerasi dan pengaruh karakteristik fisik tanah terhadap stabilisasi logam berat (Pb), yang dapat digunakan untuk penelitian lanjutan.
- 4. Memberikan kontribusi terhadap pengembangan ilmu pengetahuan di bidang teknik lingkungan, khususnya dalam kajian remediasi dan stabilisasi kontaminan logam berat dalam tanah.

1.5 Ruang Lingkup

Adapun ruang lingkup dari penelitian ini adalah sebagai berikut.

- Media tanah menggunakan tanah Inseptisol, sampel tanah diambil dari Pusdiklat UPN Jatim, Wonosalam Jombang.
- 2. Metode penelitian dilakukan dengan pembuatan reaktor aerasi tanah secara *batch*.
- 3. Zat pencemar yang digunakan adalah timbal (Pb) sebagai limbah buatan.
- 4. Parameter yang diamati adalah kadar pencemar Pb dalam tanah, beserta karakteristik fisika tanah meliputi tekstur, struktur, porositas, dan kadar air.

5. Penelitian dilakukan di Jl. Medokan Asri Rl 5 i-13, Kecamatan Rungkut, Kelurahan Kalirungkut, Kota Surabaya.