BAB I

PENDAHULUAN

I.1 Latar Belakang

Berbagai industri seperti industri farmasi, industri makanan, atau industri deterjen membutuhkan sodium hydrogen carbonate dalam proses produksinya. Sodium hydrogen carbonate merupakan bahan kimia yang memiliki sifat reaktifitas yang baik ketika bereaksi dengan asam sehingga sangat efektif dalam industri pembuat roti atau yang memproduksi cuka. Sodium hydrogen carbonate termasuk senyawa yang stabil pada suhu kamar dan pada tekanan atmosfer, serta stabilitas yang baik dalam penyimpanan dan penggunaannya, dimana sodium hydrogen carbonate akan berwujud tetap dalam bentuk padat nya yang asli. Berdasarkan sifat-sifat tersebut, sodium hydrogen carbonate dapat digunakan secara ekspansif dalam berbagai industri (samiraschem.net). Sodium hydrogen carbonate dapat dimanfaatkan di industri makanan sebagai bahan pengembang. Di industri farmasi, sodium hydrogen carbonate digunakan sebagai antasida untuk menetralkan asam dalam sistem pencernaan. Di industri deterjen, sodium hydrogen carbonate digunakan untuk meningkatkan pH deterjen (pashmitramandiri.co.id). Menurut Kementerian Perindustrian (2025), di Indonesia telah banyak didirikan industri deterjen antara lain seperti PT Wing Surya, PT Kao Indonesia dan PT. Unilever, industri makanan antara lain seperti PT Nippon Indosari Corpindo Tbk, industri farmasi seperti PT. Promedrahardjo Farmasi Industri dan PT. Holi Pharma. Berdasarkan hal tersebut, maka dapat disimpulkan bahwa kebutuhan sodium hydrogen carbonate banyak dibutuhkan oleh beberapa industri di Indonesia.

Selama ini Indonesia masih mengandalkan impor untuk memenuhi kebutuhan sodium hydrogen carbonate karena belum adanya pabrik sodium hydrogen carbonate di Indonesia. Menurut data Badan Pusat Statistik (2025), jumlah impor sodium hydrogen carbonate selama lima tahun terakhir masih cukup tinggi. Pada tahun 2020 jumlah impor sodium hydrogen carbonate sebesar 111.609,077 ton/tahun, pada tahun 2021 jumlah impor sodium hydrogen carbonate sebesar 122.399,185 ton/tahun, pada tahun 2022 jumlah impor sodium hydrogen

carbonate sebesar 106.137,472 ton/tahun, pada tahun 2023 jumlah impor sodium hydrogen carbonate sebesar 93.227,942 ton/tahun dan pada tahun 2024 jumlah impor sodium hydrogen carbonate sebesar 105.654,258 ton/tahun. Banyaknya kebutuhan impor sodium hydrogen carbonate akan mengurangi devisa negara, sehingga pendirian pabrik sodium hydrogen carbonate di Indonesia akan sangat menguntungkan dan dapat meningkatkan nilai ekspor dibandingkan nilai impor, serta berdampak pada peningkatan devisa negara. Pendirian pabrik sodium hydrogen carbonate saat ini dinilai perlu dan bermanfaat dalam mempermudah kebutuhan industri dalam negeri yang menggunakan sodium hydrogen carbonate serta akan menciptakan lapangan kerja baru sehingga mengurangi angka pengangguran, meningkatkan nilai ekspor untuk ekonomi negara.

Berdasarkan proses produksinya, sodium hydrogen carbonate dapat diproduksi melalui beberapa proses, yaitu proses solvay, proses karbonasi, dan proses karbonasi dengan penambahan ion kalsium (Ca²⁺). Pada proses solvay, produksi sodium hydrogen carbonate menggunakan bahan baku ammonia, natrium klorida, dan karbondioksida. Proses solvay memiliki beberapa kelemahan, yakni bahan baku yang diperlukan banyak sehingga memerlukan menghasilkan produk samping yaitu amonium klorida (Vandervorst, 2020.). Proses karbonasi dengan penambahan ion kalsium (Ca²⁺) untuk memproduksi sodium hydrogen carbonate dilakukan dengan menggunakan bahan baku berupa natrium karbonat, air, dan penambahan ion Ca²⁺. Pada proses ini dilakukan penambahan Ca²⁺ sehingga menambah biaya pembelian bahan baku, selain itu prosesnya dilakukan pada temperatur yang lebih tinggi yakni 60-80°C (Cortessis, 1979). Proses karbonasi dilakukan menggunakan bahan baku sodium carbonate dan carbon dioxide untuk memproduksi sodium hydrogen carbonate. Proses ini memiliki keuntungan yaitu dapat menghasilkan konversi hingga 95%, tidak menghasilkan produk samping, dilakukan pada temperatur lebih rendah, dan tidak membutuhkan banyak bahan baku sehingga lebih menghemat biaya produksi dan operasional (Keyes, 1957). Berdasarkan proses dan sifat dari bahan bakunya, Sodium hydrogen carbonate dapat diproduksi dengan mereaksikan larutan sodium carbonate dengan karbon dioksida dengan proses karbonasi (Saeman, 1975).

Sodium carbonate memiliki sifat mudah larut dalam air dan sering kali digunakan sebagai alkali dalam proses industri karena bersifat basa. Karbondioksida (CO2) banyak diterapkan dalam industri kimia dengan proses karbonasi dan memiliki sifat tidak mudah teroksidasi kecuali pada temperatur tinggi. Karbon dioksida dapat bereaksi dengan basa seperti sodium carbonate menghasilkan sodium hidrogen karbonat (Kirk-Othmer, 2001). Pendirian pabrik sodium hydrogen carbonate didasarkan oleh beberapa faktor, yaitu banyaknya permintaan industri dalam negeri terhadap produksi sodium hydrogen carbonate, ketersediaan bahan baku yang dekat dari lokasi pabrik, pengembangan nilai ekonomi devisa negara melalui strategi pemasaran yang terjangkau sehingga dapat menekan angka impor serta mengoptimalkan pendapatan negara melalui peningkatan nilai ekspor negara.

I.2 Kegunaan Sodium Hydrogen Carbonate

Sodium hydrogen carbonate dapat diaplikasikan dalam industri sebagai berikut :

a. Industri makanan

Sodium hydrogen carbonate dapat dimanfaatkan di industri makanan sebagai pengembang kue karena jika berkontak dengan air pada adonan kue akan cepat larut dan bereaksi menghasilkan karbondioksida serta tidak menghasilkan amonia, oleh karena itu cocok untuk digunakan sebagai pengembang kue. Sodium hydrogen carbonate juga merupakan bahan yang relatif murah dan tidak beracun (Ullman, 2005).

b. Industri farmasi

Sodium hydrogen carbonate dapat dimanfaatkan pada industri makanan sebagai antasida yang berfungsi untuk menetralkan asam dalam sistem pencernaan.

c. Industri tekstil

Di industri tekstil, *Sodium hydrogen carbonate* biasa digunakan sebagai bahan pemutih tekstil dan agen pewarna.

d. Industri deterjen

Sodium hydrogen carbonate dapat dimanfaatkan pada industri deterjen sebagai bahan pembuat sabun dan deterjen. Sodium hydrogen carbonate memiliki sifat alami yang dapat menghilangkan noda dan meningkatkan kemampuan pembersih deterjen dan sabun. Sodium hydrogen carbonate juga dapat digunakan untuk meningkatkan pH deterjen, meningkatkan tindakan pembersih, dan menurunkan efek kerusakan pada dinding sel detergen (pashmitramandiri.co.id).

I.3 Penentuan Kapasitas Produksi

Kapasitas produksi perlu dipertimbangkan pada saat melakukan perancangan pabrik. Oleh karena itu, prediksi kapasitas pabrik perlu dilakukan. Beberapa hal yang perlu dipertimbangkan dalam memprediksi kapasitas produksi yakni potensi pasar, serta proyeksi impor *sodium hydrogen carbonate*.

I.3.1. Data Impor Sodium Hydrogen Carbonate

Data kebutuhan impor dapat diakses dari Badan Pusat Statistik. Pertumbuhan impor (i) dapat dihitung melalui persamaan 1 (Sari, 2010).

$$i~(\%) = \frac{\textit{jumla impor(ton/tahu)} - \textit{jumlah impor tahu sebelumnya(ton/tahun)}}{\textit{juml impor tahun sebelumnya(ton/tahu)}} x 100\%..(1)$$

Data kebutuhan dan pertumbuhan impor s*odium hydrogen carbonate* di Indonesia dalam 5 tahun terakhir dapat dilihat pada Tabel I.1 berikut :

Tabel I.1 Data Kebutuhan Impor Sodium Hydrogen Carbonate (BPS, 2025)

No	o Tahun Jumlah (Ton/Tahun)		Pertumbuhan (%)	
1.	2020	111.609,077	-	
2.	2. 2021 122.399,185 9,66		9,6678	
3.	2022	106.137,472	-13,2858	
4.	2023	93.227,942	-12,1630	
5.	2024	105.654,258	13.3290	
Total		539.027,934	-2,4521	
Rata-rata		107.805,587	-0,6130	

I.3.2. Data Ekspor Sodium Hydrogen Carbonate

Data ekspor *sodium hydrogen carbonate* dalam lima tahun terakhir dapat diakses dari Badan Pusat Statistik. Pertumbuhan ekspor (i) dapat dihitung melalui persamaan 2 (Sari, 2010).

$$i~(\%) = \frac{\textit{juml}~\textit{ekspor}~(\textit{ton/tahun}) - \textit{juml}~\textit{ekspor}~\textit{tahun}~\textit{sebelumnya}~(\textit{ton/tahun})}{\textit{jumlah}~\textit{ekspor}~\textit{tahun}~\textit{sebelumnya}~(\textit{ton/tahu}~)} x 100\%.(2)$$

Data jumlah dan pertumbuhan ekspor sodium hydrogen carbonate di Indonesia dalam 5 tahun terakhir dapat dilihat pada Tabel I.2 berikut :

Tabel I.2 Data Jumlah Ekspor Sodium Hydrogen Carbonate (BPS, 2025)

No	Tahun	Jumlah (Ton/Tahun)	Pertumbuhan (%)
1.	2020	37,4350	-
2.	2021	100,2838	167,8878
3.	2022	29,7425	-70,3417
4.	2023	37,6208	26,4884
5.	2024	44,5044	18,0790
Total		249,5044	142,1136
Rata-rata		49,9009	35,5284

I.3.3. Kapasitas Pabrik Sodium Hydrogen Carbonate yang telah Berdiri

Di Indonesia belum terdapat pabrik *sodium hydrogen carbonate*, oleh karena itu digunakan data kapasitas pabrik yang telah berdiri di berbagai negara.

Tabel I.3 Pabrik yang telah Berdiri di Dunia dan Kapasitasnya

No	Nama Perusahaan	Lokasi	Kapasitas (Ton/Tahun)
1.	Tata Chemical	Inggris	50.000
2.	Solvay	Bulgaria	200.000
3.	Eti Soda	Turki	200.000
	Total	450.000	

I.3.4. Data Konsumsi Sodium Hydrogen Carbonate di Indonesia

Sodium Hydrogen Carbonate banyak digunakan di berbagai industri seperti industri makanan untuk bahan pengembang kue serta di industri deterjen sebagai bahan baku pembuatan deterjen. Berikut data konsumsi sodium hydrogen carbonate di Indonesia.

Tabel I.4 Data Konsumsi Sodium Hydrogen Carbonate di Indonesia

No	Nama Perusahaan	Kapasitas (Ton/Tahun)
1	PT Kao	13.000
2	PT Unilever	120.000
3	PT Wings Surya	600.000
4	PT Nippon Indosari Corpindo 30.000	
Total		763.000

I.3.5. Kapasitas Pabrik Sodium Hydrogen Carbonate yang Direncanakan

Menurut Sari, 2010 kapasitas pabrik dapat dihitung menggunakan metode *discounted* yakni dengan persamaan :

$$m_1 + m_2 + m_3 = m_4 + m_5....$$
 (3)

Keterangan: m

 $m_1 = \text{nilai impor (ton)}$

 m_2 = kapasitas pabrik lama (ton)

 m_3 = kapasitas pabrik baru (ton)

 $m_4 = \text{jumlah ekspor (ton)}$

 m_5 = konsumsi dalam negeri (ton)

Perhitungan perkiraan impor *sodium hydrogen carbonate* tahun 2029 (m1) berdasarkan data imnpor pada tabel I.1, dengan persamaan:

$$m = P(1+i)^n \tag{4}$$

Keterangan:

m = jumlah produk pada tahun ke-x (ton)

P = Data impor pada tahun terakhir (ton/tahun)

i = rata-rata pertumbuhan per tahun (%)

n = selisih tahun

Diperkirakan nilai impor *sodium hydrogen carbonate* di Indonesia tahun 2029 sebesar:

$$m = P(1+i)^n$$

 $m_1 = 105.654,258 (1-0,6130\%)^{(2029-2024)}$
 $= 102.455,3 \text{ ton/tahun}$

Selanjutnya, menghitung jumlah ekspor *sodium hydrogen carbonate* di Indonesia pada tahun 2029 (m4) dengan menggunakan data ekspor pada tabel I.2.

$$m = P(1+i)^n$$

 $m4 = 44,4223 (1 + 35,5284\%)^{(2029-2024)}$
 $= 203,1198 \text{ ton/tahun}$

Data produksi *sodium hydrogen carbonate* (m2) dapat dilihat pada tabel I.3 dan data konsumsi *sodium hydrogen carbonate* di Indonesia (m5) dapat dilihat pada tabel I.4. maka:

m2 = 450.000 ton/tahun

m5 = 763.000 ton/tahun

Berdasarkan data-data yang telah didapatkan, maka dapat dihitung kapasitas pabrik baru yakni:

$$m_3 = (m_4 + m_5) - (m_1 + m_2)$$

 $m_3 = (203,1198 + 763.000) - (102.455,3 + 450.000)$ ton/tahun
 $m_3 = 210.747,8336$ ton/tahun

Kapasitas yang direncanakan untuk pabrik *sodium hydrogen carbonate* di Indonesia pada tahun 2029 direncanakan sekitar 40% dari total kebutuhan di Indonesia, sehingga:

kapasitas produksi pabrik =
$$40\%$$
 x $210.747,8336$ ton/tahun = $84.299,1334 \approx 85.000$ ton/tahun = $10.732,323$ kg/jam

I.4 Spesifikasi Bahan Baku dan Produk

A. Spesifikasi Bahan Baku

1. Sodium Carbonate

a.) Sifat Fisika (Shandong Jiuchong Chemical)

Sifat fisika dari sodium carbonate sebagai berikut :

Rumus molekul : Na₂CO₃

Fase : Padatan

Massa molekul : 106 g/mol

Specific Gravity : 2,533 g/ml (20°C)

Warna : Serbuk putih ke abu-abu an

Densitas : 0.59-1.04 gram/mL

Titik lebur : 825 °C

: 28 gr Na₂CO₃/ 100 gr H₂O (30 °C)

b.) Sifat Kimia (Kirk-Othmer, 2001)

Sifat kimia dari sodium carbonate sebagai berikut :

- 1. *Sodium carbonate* bersifat basa kuat dan dapat bereaksi dengan asam untuk menghasilkan garam dan karbon dioksida (CO₂)
- 2. *Sodium carbonate* bereaksi dengan asam kuat, seperti asam klorida (HCl), menghasilkan garam, karbon dioksida (CO₂), dan air.
- 3. *Sodium carbonate* dapat bereaksi dengan ion magnesium dan ion kalsium dalam air, menghasilkan endapan karbonat
- 4. *Sodium carbonate* dapat bereaksi dengan karbon dioksida dan air untuk membentuk *sodium hydrogen carbonate* (NaHCO₃)

2. Karbondioksida

a.) Sifat Fisika (PT Petrokimia Gresik)

Sifat fisika dari karbon dioksida sebagai berikut :

Rumus molekul : CO2

Fase : Gas

Massa molekul : 44 g/mol

Densitas : 1,976 g/L (273 K pada 1 atm)

Warna : Tidak berwarna

Viskositas : 0,015 (298 K pada 1 atm)

: 2 gr CO₂/ 100 gr H₂O (2,5 atm; 50 °C)

b.) Sifat Kimia (Kirk-Othmer, 2001)

Sifat kimia dari karbon dioksida sebagai berikut :

- 1. Karbondioksida (CO₂) dapat bereaksi dengan karbon pada suhu tinggi menghasilkan karbon monoksida.
- 2. Karbondioksida dapat bereaksi dengan larutan alkali seperti natrium karbonat (Na₂CO₃) dan air untuk membentuk natrium bikarbonat (NaHCO₃).
- 3. Karbondioksida dapat terurai menjadi karbon monoksida (CO) dan oksigen (O₂) pada suhu di atas 1700°C

B. Spesifikasi Produk

- 1. Sodium Hydrogen Carbonate
 - a.) Sifat Fisika

Sifat fisika dari Sodium Hydrogen Carbonate sebagai berikut :

Rumus molekul : NaHCO3

Fase : Padatan Warna : Putih

Massa molekul : 84,01 g/mol

Densitas : 2,22 gram/cm³ pada 20°C

Titik lebur : 270°C pada karbon dioksida

Kelarutan : 14,45 gr NaHCO₃/ 100 gr H₂O (50 °C)

b.) Sifat Kimia (MSDS, 2024)

Sifat kimia dari Sodium Hydrogen Carbonate sebagai berikut :

- 1. Sodium hydrogen carbonate mudah digunakan serta tidak beracun
- 2. Memiliki stabilitas yang baik pada suhu ruang
- 3. Sodium hydrogen carbonate mudah direaksikan dan dapat direaksikan di suhu tinggi

I.5 Penentuan Lokasi Pabrik

Penentuan lokasi pabrik perlu diperhatikan dalam merancang suatu pabrik. Hal ini untuk menentukan keberhasilan dan keberlangsungan berjalannya suatu pabrik. Dalam penentuan lokasi pabrik diperhatikan beberapa faktor agar diperoleh lokasi yang baik dan sesuai dengan pabrik yang direncanakan. Faktor-faktor tersebut meliputi faktor utama dan faktor khusus. Dengan memperhatikan dan mempertimbangkan faktor tersebut, maka dipilih lokasi pabrik yang direncanakan akan didirikan di Kawasan Industri JIIPE (*Java Integrated Industrial and Port Estate*) di Jalan Raya Manyar KM. 11 Manyarejo, Manyar Sidorukun, Kecamatan Manyar, Kabupaten Gresik, Provinsi Jawa Timur.

Gambar I.1 Peta Rencana Pendirian Pabrik Sodium Hydrogen Carbonate

(Sumber : Google Maps)

Alasan pemilihan lokasi pendirian pabrik tersebut didasari oleh beberapa faktor, yaitu:

A. Faktor Utama

1. Bahan baku

Bahan baku merupakan salah satu faktor yang harus diperhatikan dalam penentuan lokasi suatu pabrik. Pada dasarnya suatu pabrik sebaiknya didirikan di daerah yang dekat dengan sumber bahan bakunya. Bahan baku pabrik sodium hydrogen carbonate diproduksi dari sodium

carbonate dan karbondioksida. Indonesia belum memiliki pabrik sodium carbonate, oleh karena itu bahan baku sodium carbonate diimpor dari Shandong Jiuchong Chemical, China sedangkan bahan baku karbondioksida diperoleh dari PT. Petrokimia Gresik. Pemilihan tersebut dikarenakan jarak sumber bahan baku dengan lokasi pabrik yang didirikan cukup dekat yakni 13 Kilometer sehingga dapat mengurangi biaya transportasi.

2. Pemasaran

Pabrik didirikan karena adanya permintaan atau kebutuhan dari produk yang dihasilkan. Ada banyak keuntungan apabila lokasi suatu pabrik dekat dengan daerah pemasaran, diantaranya dapat mempermudah keamanan transportasi, menghemat biaya pengiriman, dan yang utama yaitu perkembangan hasil produksi pabrik akan dapat meningkat pesat. Pabrik sodium hydrogen carbonate banyak dibutuhkan oleh beberapa industri makanan seperti PT Nippon Indosari Corpindo Tbk. dan PT Pangansari Utama yang berada di kawasan JIIPE, selain itu pabrik sodium hydrogen carbonate juga dibutuhkan oleh industri deterjen seperti PT Sumber Bersih Dunia yang terletak di dekat kawasan JIIPE.

3. Tenaga Listrik dan Bahan Bakar

Tenaga listrik dan bahan bakar diperlukan untuk keberlangsungan berjalannya proses dalam suatu pabrik. Sumber energi utama yang dibutuhkan dalam suatu pabrik yaitu energi listrik. Pendirian lokasi pabrik berada di kawasan JIIPE yang memiliki pembangkit tenaga listrik mandiri atau bisa dengan menyediakan tenaga pembangkit tenaga listrik di pabrik melalui adanya generator atau turbin. Sedangkan bahan bakar dapat diperoleh dari distribusi pertamina.

4. Sumber air

Air merupakan faktor yang sangat penting dalam suatu industri khususnya industri kimia. Air dibutuhkan sebagai sanitasi, air proses, *steam*, media pendingin dan lain-lain. Dalam operasional pabrik, kebutuhan air relatif cukup banyak. Mengingat lokasi pabrik yang

direncanakan dekat dengan aliran sungai Bengawan Solo yang terletak di sebelah timur, maka untuk memenuhi kebutuhan air tersebut diambil dari air sungai yang letaknya tidak jauh dari lokasi pabrik.

5. Iklim dan Geografi

Iklim dan geografi berpengaruh dalam penentuan lokasi pabrik, Aspek-aspek yang perlu diperhatikan dalam penentuan lokasi pabrik yaitu:

- a. Keadaan alam, dimana alam yang menyulitkan konstruksi akan mempengaruhi spesifikasi peralatan.
- b. Keadaan angin (kecepatan dan arahnya), pada suatu situasi terburuk yang pernah terjadi pada tempat itu, bagaimana akibatnya pada daerah itu.
- c. Gempa bumi yang pernah terjadi.
- d. Kemungkinan untuk perluasan wilayah pabrik di masa yang akan datang.

Pembangunan pabrik di Kawasan industri Gresik tidak termasuk daerah yang rawan bencana alam atau gempa. Hal ini membuat proses pembangunan pabrik tidak memerlukan konstruksi khusus sehingga biaya yang dibutuhkan dalam proses konstruksi tidak terlalu banyak.

B. Faktor Khusus

1. Transportasi

Transportasi merupakan faktor khusus dalam pendirian pabrik. Transportasi digunakan untuk bahan baku maupun untuk produk yang dihasilkan juga sebagai sarana transportasi perdagangan. Lokasi pabrik didirikan di Gresik dan tidak mengganggu sarana transportasi karena letaknya strategis terhadap prasarana transportasi. Untuk transportasi darat dapat ditempuh melalui jalan Raya atau Tol Gresik-Surabaya yang dapat dilalui oleh kendaraan yang bermuatan berat seperti truk, untuk transportasi laut terdekat dapat melalui pelabuhan Manyar atau fasilitas pengangkutan laut di kawasan Gresik. Untuk transportasi udara dapat dipenuhi melalui bandara udara Juanda di Sidoarjo.

2. Buruh dan tenaga kerja

Faktor buruh dan tenaga kerja merupakan faktor khusus bagi suatu perusahaan di dalam suatu industri, karena keberhasilan dan tercapainya tujuan dari perusahaan dipengaruhi oleh kualitas dan kemampuan tenaga kerja yang dimiliki. Tenaga kerja yang akan direkrut dapat peroleh dari tenaga kerja yang berkemampuan sesuai bidang ahli yang dibutuhkan instansi industri atau warga sekitar dengan mengedepankan kompetensi sesuai dengan kebutuhan industri. Upah yang berada di kawasan Gresik memiliki UMR (Upah Minimum Regional) yang cukup baik dan tidak mengganggu aspek ekonomi pabrik. Hal ini cukup baik untuk menciptakan lapangan kerja bagi masyarakat.

3. Limbah pabrik (*Waste disposal*)

Apabila limbah buangan pabrik berbahaya bagi kehidupan di sekitar pabrik, maka harus memperhatikan dan melakukan pengolahan terlebih dahulu sehingga tidak berdampak buruk dan membahayakan lingkungan sekitar dengan memperhatikan peraturan pemerintah dan masyarakat setempat. Limbah pabrik setelah diolah dan ramah lingkungan dapat dibuang ke perairan atau ke badan penerima air buangan.

4. Karakteristik tanah dan lokasi

Karakteristik tanah dan lokasi menjadi hal yang perlu diperhatikan dalam pembangunan pabrik. Struktur tanah harus cukup baik dan memiliki daya dukung yang baik dan kuat terhadap pondasi bangunan pabrik dan tidak merusak pondasi jalan sekitar. Aspek-aspek yang perlu diperhatikan yaitu antara lain:

- a. Struktur lokasi apakah berada pada daerah bekas sawah, rawa atau bukit
- b. Harga tanah dan fasilitas fasilitas lain

Struktur dan karakteristik tanah di daerah Gresik tidak termasuk daerah dengan struktur tanah yang tidak membahayakan dan aman, mengingat banyaknya pula industri lain yang didirikan di lokasi tersebut.

5. Keadaan lingkungan dan masyarakat

Keadaan lingkungan pabrik berada cukup jauh dari daerah pemukiman sehingga dinilai tidak mengganggu aktivitas masyarakat pemukiman sekitar lokasi. Keadaan masyarakat disekitar lokasi akan mempengaruhi pendirian suatu pabrik yakni usaha-usaha dari masyarakat seperti toko kecil, warung makan dan warung kopi, hingga kos-kosan sehingga dengan adanya pabrik akan menambah pendapatan dan tingkat perekonomian masyarakat sekitar lokasi. Berdasarkan pengamatan, disekitar lokasi sudah terdapat fasilitas-fasilitas pabrik memungkinkan karyawan atau keluarga karyawan hidup dengan layak, seperti adanya sarana pendidikan dari dasar sampai pendidikan tinggi, sarana ibadah maupun sarana lainnya.