BAB I PENDAHULUAN

1.1 Latar Belakang

Dilansir dari *Indonesia Environment & Energy Center* pada tahun 2024, sektor energi Indonesia terutama pembangkit listrik berbasis bahan bakar fosil, masih menjadi salah satu kontributor utama emisi gas rumah kaca (GRK). Menurut laporan terbaru, Indonesia telah menyumbang sekitar 2,3% dari emisi global dengan sektor pembangkit listrik yang didominasi oleh batu bara menjadi salah satu penyumbang terbesar akibat proses pembakaran bahan bakar fosil untuk energi. Dengan adanya data diatas khususnya pada emisi karbon yang dihasilkan dari penggunaan bahan bakar fosil, maka diperlukan upaya yang mengerucut pada program *Net Zero Emission* dengan target untuk mencapai nilai nol bersih emisi pada tahun 2060 (Ariefianto & Aprilianto, 2021), program tersebut mendorong adanya regulasi regulasi baru di berbagai negara yang berkaitan dengan penngadaan energi listrik untuk mencari energi baru terbarukan dan energi biomassa adalah salah satunya.

Biomassa adalah salah satu sumber energi terbarukan yang semakin sering mendapat perhatian karena potensi kontribusinya terhadap pengurangan emisi karbon dan penggunaan dengan bahan bakar fosil (Nawawi *et al.*, 2018). Biomassa dihasilkan dari bahan bahan organic, seperti limbah pertanian, kayu, dan sisa sisa tanaman yang dapat diubah menjadi energi melalui proses pembakaran atau konversi kimia. Pada sektor industri terutama meliputi pembangkit listrik salah satu energi biomassa yang digunakan untuk bahan bakar dari pembangkit adalah serbuk kayu atau *sawdust* (Ilham & Sinaga, 2022). *Sawdust* menjadi salah satu pilihan untuk bahan bakar dikarenakan sumber dari limbah tersebut di daerah indonesia sangat melimpah dan biaya yang rendah. Keunggulan yang utama dari *sawdust* adalah kandungan kimia dan kandungan senyawa yang dimiliki oleh *sawdust* memiliki nilai yang sangat mirip bila dibandingkan dengan batu bara (Sulaiman *et al.*, 2018).

Proses pencampuran batu bara dengan biomassa disebut dengan *co-firing*, dan dengan adanya proses *Co-firing* pada *boiler* tentunya akan memberikan

dampak secara langsung maupun tidak langsung terhadap boiler dan alat bantunya. Tentunya hal ini didukung dengan adanya penelitian tentang dampak Co-firing terhadap peralatan PLTU pada tahun tahun sebelumnya, penambahan bahan bakar alternatif dalam sistem Co-firing sebanyak 3% sampai dengan 10% dengan semakin tinggi komposisi bahan bakar alternative maka semakin rendah gas rumah kaca yang dihasilkan (Aditya et al., 2022). metode yang digunakan untuk menghitung hasil kinerja boiler adalah Metode langsung dan tidak langsung atau biasa disebut metode (Direct) dan (Indirect) yang berasal dari standar yang ditetapkan oleh America Society Of Mechanical Engineers (ASME). Lebih spesifik pada (ASME) Performance Test Code (PTC) "4.1 Fire tube Boiler Efficiency Test". Dibantu oleh praktik teknis yang berkembang di berbagai industri boiler. Kedua metode ini digunakan secara luas untuk menilai efisiensi pembakaran bahan bakar dalam sistem boiler

Penelitian terdahulu yang dilakukan oleh (Dwiaji, 2023) yang mempelajari tentang dampak proses *co-firing* terhadap kinerja peralatan *boiler* di pembangkit listrik tenaga uap, dengan variabel yang digunakan adalah campuran bahan bakar biomassa untuk *co firing* sebesar 3% sampai 5%. hasil yang didapatkan nilai pada *plant heat rate* selama proses *co-firing* semakin meningkat dari 2862 Kcal/Kwh menjadi 2866,35 Kcal/Kwh, dan performa peralatan *boiler* tidak terpengaruh oleh proses *co-firing*. Penelitian yang dilakukan oleh (A. Irawan *et al.*, 2023) berfokus mempelajari penggunaan biomassa khususnya cangkang kelapa sawit sebagai bahan bakar alternatif dan dampaknya terhadap efisiensi *boiler* dan pengaruh pada lingkungan, dengan metode perhitungan *direct* yang digunakan hasil penelitian ini adalah efisiensi *boiler* selama proses pembakaran tidak memiliki perubahan yang signifikan, dan penggunaan biomassa memiliki potensi tinggi untuk meningkatkan kerak pada *boiler*.

Penelitian ini bertujuan untuk mengetahui pengaruh nilai variasi campuran biomassa *Sawdust* dan batu bara terhadap nilai efisiensi *boiler* dengan menggunakan metode perhitungan *direct* dan *indirect*, dan pengaruhnya terhadap kinerja pembakaran *boiler*, serta mengetahui pengaruhnya terhadap emisi pembakaran.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas didapatkan rumusan masalah untuk penelitian ini adalah untuk menganalisa bagaimana pengaruh variasi biomassa sawdust dan batu bara terhadap nilai efisiensi boiler dengan menggunakan metode perhitungan direct dan indirect dan pengaruhnya terhadap pembakaran di dalam boiler serta emisi yang dihasilkan.

1.3 Tujuan

Adapun beberapa tujuan dari penelitian ini, yaitu:

- 1. Untuk menganalisa pengaruh variasi biomassa *sawdust* dan batu bara terhadap nilai efisiensi *boiler*
- 2. Untuk menghitung hasil efisiensi *boiler* dengan metode perhitungan *Direct* dan *Indirect* dan mengetahui perbedaannya.
- 3. Untuk mengetahui pengaruh variasi biomassa terhadap kinerja pembakaran di dalam *boiler* dan emisi yang dihasilkan

1.4 Batasan Masalah

Adapun batasan masalah dalam penelitian ini, sebagai berikut:

- 1. Menggunakan boiler dengan tipe Pulverized Coal Boiler.
- 2. Menggunakan batu bara dengan tipe (*Low Rank Coal.*)
- 3. Menggunakan Biomassa dengan tipe Sawdust.
- 4. Perhitungan Efisiensi *Boiler* menggunakan metode perhitungan *direct* dan *indirect*. Sesuai dengan standart PT PLN dan ASME PTC 4.1
- Pengambilan data dilakukan pada PT Pembangkit Listrik Nusantara Power Unit 9 dari bulan Maret sampai April Tahun 2025
- 6. Jenis Metode Penggunaan *Co-firing* yang digunakan adalah jenis *direct co-combustion*
- 7. Data diambil dengan menentukan beban di *range* (600-660) MW

1.5 Manfaat Penelitian

Penelitian Ini diharapkan memberikan sejumlah manfaat praktis dan konseptual yang dapat diterapkan dalam berbagai konteks, terutama dalam pengembangan dan memprediksi Teknologi *Co-firing* dengan biomassa *sawdust*. Berikut adalah beberapa manfaat yang dapat diambil dari penelitian ini.

1. Analisa Hasil Efisiensi Boiler

Penambahan rasio *sawdust* pada pembakaran *boiler* akan mempengaruhi kinerja pembakaran dari *boiler* dan membuat efisiensi dari *boiler* akan berubah ubah dikarenakan perbandingan kandungan dari *sawdust* yang dicampur di bahan bakar sehingga penelitian ini dapat memberikan hasil perbedaan efisiensi *boiler* dengan presentasi biomassa yang berbeda beda dengan beban yang sama

2. Peningkatan keberlanjutan energi

Penelitian ini memberikan kontribusi terhadap strategi dekarbonisasi di sektor energi Indonesia dengan menunjukan bahwa biomassa sepertii *sawdust* dapat digunakan secara efektif dalam *Co-firing*, penelitian ini mendukung transisi menuju sumber energi terbarukan dan lebih bersih, ini akan membantu pemerintah dalam sektor energi mencapai target netralitas karbon

3. Data pendukung untuk kebijakan energi

Data efisiensi yang dihasilkan dari metode *Direct* dan *Indirect* akan memberikan wawasan kepada pembuat kebijakan tentang sejauh mana biomassa *sawdust* dapat menggantikan batubara dalam skala yang lebih besar tanpa mengurangi kinerja pembangkit.