

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

BAB I PENDAHULUAN

I.1 Latar Belakang

Indonesia merupakan negara yang memiliki potensi sumber daya alam (SDA) yang sangat besar. Potensi sumber daya alam Indonesia yang besar salah satunya dibuktikan dengan keberadaan kawasan karst yang mencapai hampir 20% dari total luas wilayah Indonesia. dimana kawasan karst terdiri atas batuan kapur yang berpori sehingga air dipermukaan tanah selalu merembes dan mengalir ke dalam tanah sehingga dapat dijadikan sumber daya yang digunakan sebagai bahan bangunan dan industri, dimana pemanfaatan terbesar batuan kapur di Indonesia yaitu sebagai bahan baku dari pembuatan semen (Fitri, 2023)

Semen memiliki banyak jenis sesuai dengan material dan karakteristiknya, salah satunya yakni *Portland Composite Cement* (PCC). Semen PCC merupakan produk perekat hasil penggilingan dari terak semen Portland dan gypsum dengan penambahan bahan anorganik dengan kadar total bahan anorganik 6-35% dari massa semen Portland komposit, bahan-bahan anorganik tersebut merupakan bahan-bahan mineral bersifat pozzolanik. Bahan pozzolanik merupakan bahan mineral yang unsur-unsurnya tidak memiliki sifat semen secara mandiri, namun bila bereaksi dengan kalsium-oksida dan air pada suhu biasa dapat membentuk senyawa seperti semen (cementitious). Pada umumnya semen PCC memiliki panas hidrasi rendah sampai sedang, tahan terhadap serangan sulfat, kekuatan tekan awal kurang, namun kekuatan akhir lebih tinggi. (Susanto, 2019)

Umumnya, Bahan dalam pembuatan semen menggunakan batu kapur, tanah liat, dengan bahan filler serta penunjang yang digunakan untuk menyeimbangkan unsur kimia yang terdapat dalam batu kapur dan tanah liat agar memperoleh hasil sesuai kebutuhan dan jenis dari semen yang akan dibuat pada pencampuran awal dan pencampuran akhir, bahan koreksi/penunjang di pencampuran awal berupa pasir silika dan pasir besi dan bahan untuk pencampuran akhir yakni fly ash (Amelia,2019). Penambahan pasir besi pada tahap pencampuran awal telah lama

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

digunakan sebagai bahan tambahan untuk menghantarkan panas dalam pembuatan terak (clinker). Namun, tingginya harga pasir besi menjadi kendala utama dalam menekan biaya produksi. Oleh karena itu, diperlukan alternatif bahan yang lebih ekonomis namun tetap memiliki kandungan yang setara dengan pasir besi. Salah satu alternatif yang potensial adalah penggunaan copper sludge, yaitu limbah industri yang mengandung unsur besi dan logam lainnya. Copper slag tidak hanya dapat dimanfaatkan sebagai pengganti pasir besi, tetapi juga memberikan solusi terhadap masalah lingkungan dengan mengurangi limbah industri.

Pemanfaatan limbah Copper slag menjadi bahan aditif serta penunjang merupakan salah satu cara dalam mengatasi limbah yang dihasilkan. Salah satu perusahan yang menghasilkan limbah copper sludge yakni dari PT Smelting Gresik yang menghasilkan copper slag sebesar 655.000 ton per tahun yang belum termanfaatkan seluruhnya (Komisi VII DPR RI, 2021). Berdasarkan hal tersebut, dengan banyaknya jumlah limbah copper slag yang dihasilkan maka masalah yang timbul adalah bagaimana memanfaatkan limbah tersebut agar tidak dapat mencemari lingkungan dan menjadikannya produk dengan nilai ekonomis yang tinggi. Maka dari itu copper slag digunakan sebagai bahan aditif dalam pembuatan semen

I.2 Kegunaan Produk

PCC (*Portland Composite Cement*) digunakan untuk bangunan-bangunan pada umumnya seperti jembatan, jalan raya, perumahan dan lain-lain, PCC mempunyai panas hidrasi yang lebih rendah selama proses pendinginan, sehingga pengerjaannya akan lebih mudah dan menghasilkan permukaan beton atau plester yang lebih rapat dan lebih halus. Keunggulan PCC (Portland Composite Cement) dari jenis semen yang lain yakni

 Dalam proses produksi PCC, penggunaan bahan bakar dapat berkurang sampai sekitar 20%, dengan menggunakan material komposit sebagai penggnati sebagaian klinker

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

- 2. Subtitusi sebagian klinker dengan material komposit ini juga dapat mengurangi potensi emisi gas CO2,
- 3. PCC juga menggunakan waste material seperti copper slag dan fly ash sebagai komposit pengganti klinker.
- 4. PCC dirancang untuk memiliki durabilitas yang tinggi, tahan terhadap sulfat, panas hidrasi rendah, dan memiliki kekedapan tinggi sehingga mampu menopang ketahanan bangunan lebih lama,

(Yanita, 2020)

I.3 Lokasi Pabrik

Pabrik *Portland Composite Cement* direncanakan untuk dibangun di kabupaten bangkalan, Jawa timur. Lokasi pabrik yang strategis akan mempengaruhi segi komersial maupun pengembangan di masa yang akan datang. Pemilihan lokasi tersebut didasarkan pada beberapa faktor. Secara umum terdapat 2 faktor yang digunakan dalam penentuan lokasi pabrik, yaitu:

- 1. Faktor utama
- 2. Faktor khusus

I.3.1 Faktor Utama

I.3.1.1. Ketersediaan Bahan Baku

Bahan baku utama untuk memproduksi semen adalah batu kapur dan tanah liat. Batu kapur (limestone) merupakan salah satu bahan galian industri non logam yang sangat besar potensinya dan tersebar hampir di seluruh wilayah Indonesia. Menurut data ESDM (Energi dan Sumber Daya Mineral), Cadangan sumber daya batu kapur di indonesia saat ini masih sangat melimpat tercatat masih terdapat cadangan sumber daya batu kapur sebesar 185.474.061.756 ton tereka di seluruh indonesia, terdapat data sebaran sumber daya di berbagai provinsi sebagai berikut

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

	Ta	abel I.	1 Potensi Wila	ayah Batuan K	apur di Indonesia	a
1	Aceh	66	10.478.721.000	6.099.010.932	127.255.579	1.447.790.159
2	Bali	9	4.982.737.000	-	879.551.000	1.329.500.000
3	Banten	13	60.000.000	2.746.387.292	485.937.706	874.167.708
4	Bengkulu	5	837.088.000	-	-	-
5	D.I. Yogyakarta	13	365.602.000	4.532.390	3.612.930	22.197.229
6	Gorontalo	14	-	25.533.350.000	-	-
7	Jambi	4	8.100.000	646.380.000	307.800.000	288.025.200
8	Jawa Barat	43	431.195.000	627.061.009	1.153.466.679	962.821.723
9	Jawa Tengah	50	625.302.000	4.914.583.190	2.287.228.466	1.433.211.236
10	Jawa Timur	115	1.226.548.700	1.858.389.259	1.939.524.447	2.384.306.391
11	Kalimantan Selatan	50	24.815.810.000	1.858.070.345	2.055.900.809	429.995.522
12	Kalimantan Tengah	10	448.775.000	-	-	-
13	Kalimantan Timur	32	5.494.901.000	12.963.682.642	2.548.038.632	261.951.243
14	Kalimantan Utara	5	1.109.500.000	-	-	-
15	Lampung	9	15.141.000	231.014.761	8.835.323	6.299.742
16	Maluku	1	65.250.000.000	-	-	-
17	Maluku Utara	26	11.273.072.800	16.926.850.000	34.290.000	55.000.000
18	Nusa Tenggara Barat	27	1.116.263.000	21.826.000	58.050.000	-
19	Nusa Tenggara Timur	106	32.504.948.000	30.462.126.000	1.519.388.750	613.861
20	Papua	38	19.668.100.000	168.832.034	-	147.142.000
21	Papua Barat	60	271.599.830.000	5.559.083.000	-	-
22	Riau	2	42.986.000	-	-	-
23	Sulawesi Barat	12	616.375.000	-	119.700.000	-
24	Sulawesi Selatan	44	11.917.414.000	4.200.469.676	504.907.069	370.764.962
25	Sulawesi Tengah	69	20.790.088.300	5.047.681.621	4.429.251.987	6.405.523.424
26	Sulawesi Tenggara	50	34.275.884.000	37.318.205.776	3.140.510.567	2.522.392.635
27	Sulawesi Utara	14	2.728.715.000	-	-	-
28	Sumatera Barat	73	83.038.747.000	21.916.774.293	40.845.000	40.845.000
29	Sumatera Selatan	16	425.707.000	861.753.289	710.492.003	790.186.655
30	Sumatera Utara	24	1.938.406.667	5.507.998.249	929.000	-
	TOTAL	1000	608.085.957.467	185.474.061.756	22.355.515.946	19.772.734.689

(ESDM, 2023)

Kabupaten Bangkalan mempunyai potensi mineral pertambangan yang cukup besar, salah satunya adalah potensi mineral tambang berbasis karbonat yaitu batu kapur. Untuk itu pabrik kami akan mensuplai bahan baku batu kapur dari kabupaten bangkalan ,hal ini juga akan memperkecil biaya transportasi..

Pabrik Portland Composite Cement (PCC) yang kami rancang akan melakukan kerja sama dengan perusaahan lain untuk menyuplai kebutuhan seperti Tanah liat diperoleh dari PT. Benua Indah Tuban. Dimana PT Benua Indah Tuban merupakan industri penambang tanah liat yang berada di Tuban yang kapasitas produksi pertahunnya mencapai 24.500 ton per tahun (Kemenperin 2024), Tuban merupakan salah satu kabupaten dengan penghasil tanah liat sebagai bahan baku semen terbesar di Indonesia, adapun data potensi cadangan material tanah liat tiap kelurahan di kabupaten Tuban sebagai berikut

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Tabel I. 2 Potensi Wilayah Tanah Liat

No	Desa / Kelurahan	Dominasi Potensi Material Tanah Liat	Luas (ha)
1	Desa Bejagung	Potensi Sedang	64,99
2	Desa Bektiharjo	Potensi Tinggi	1111,89
3	Desa Boto	Potensi Tinggi	78,1
4	Kelurahan Gedongombo	Potensi Sedang	344,46
5	Desa Genaharjo	Potensi Sedang	518,97
6	Desa Gesing	Potensi Tinggi	602,2
7	Desa Jadi	Potensi Tinggi	642,07
8	Kelurahan Karang	Potensi Sedang	74,57
9	Desa Kowang	Potensi Sedang	280,52
10	Desa Ngino	Potensi Sedang	229,94
11	Desa Penambangan	Potensi Tinggi	254,14
12	Desa Prunggahan Kulon	Potensi Tinggi	545,72
13	Desa Prunggahan Wetan	Potensi Sedang	68,18
14	Desa Sambongrejo	Potensi Sedang	461,44
15	Desa Semanding	Potensi Tinggi	114,91
16	Desa Tegalagung	Potensi Tinggi	186,65
17	Desa Tunah	Potensi Tinggi	265,36

(Nugraha, 2023)

Adapun bahan filler seperti Pasir silika diperoleh dari CV. Mitra Usaha Mandiri, Gypsum diperoleh dari PT Aneka Juragan Material, Copper slag diperoleh dari PT. Smelting Gresik, dan Fly Ash diperoleh dari limbah PT PJB Paiton Jawa Timur.Semua bahan akan didistribusikan dengan jalur darat via jembatan suramadu.

I.3.1.2. Pemasaran

Portland Composite Cement berperan penting untuk indonesia yang saat ini sedang gencar membangun infrastruktur dan saat ini sedang di dirikan ibukota baru yaitu IKN yang tentu nya membutuhkan pasokan semen yang banyak. Dengan didirikannya pabrik di daerah Bangkalan, diharapkan dapat memenuhi kebutuhan semen portland composite di indonesia dan dapat di ekspor untuk meningkatkan devisa negara. Dengan lokasi yang dekat dengan ibukota provinsi pelabuhan dan kawasan industri sehingga mempermudah pemasaran dalam dan luar negeri.

I.3.1.3. Utilitas

Utilitas sebagai unit pendukung mempunyai peranan penting dalam kelangsungan pabrik. Unit utilitas meliputi kebutuhan air dan listrik. Air merupakan kebutuhan yang penting dalam industri kimia. Air banyak digunakan sebagai media pendingin, sanitasi, steam, serta kebutuhan lainnya. Kebutuhan air dapat dipenuhi

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

dengan baik dan ekonomis karena kawasan pabrik dekat dengan sumber aliran sungai. Listrik sebagai penunjang operasional kegiatan pabrik disuplai dari Perusahaan Listrik Negara (PLN), namun untuk menjamin operasional pabrik maka pabrik memiliki generator pembangkit listrik dengan bahan bakar solar. Bahan bakar solar diperoleh dari PT. Pertamina.

I.3.1.4. Iklim/Cuaca

Kondisi iklim di wilayah Bangkalan memiliki rata-rata yang cukup baik. Seperti daerah lainnya di Indonesia, Bangkalan memiliki iklim tropis. Bencana alam seperti gempa bumi dan tanah longsor jarang terjadi sehingga operasional pabrik dapat berjalan dengan baik.

I.3.2 Faktor Khusus

I.3.2.1. Transportasi

Sarana dan prasarana transportasi sangat diperlukan untuk proses penyediaan bahan baku dan pendistribusian produk. Dengan adanya jembatan Suramadu akan memudahkan akses transportasinya. Dekat dengan pelabuhan kapal dan tanjung perak juga merupakan nilai tambah untuk distribusi produk melalui jalur laut.

I.3.2.2. Tenaga Kerja

Kebutuhan tenaga kerja sangat mudah dipenuhi. Hal ini mengingat bahwa jumlah penduduk yang banyak di Indonesia. Kawasan industri merupakan tujuan sebagai tujuan para pencari kerja. Sebagian tenaga kerja diambil dari yang berpendidikan kejuruan atau menengah serta sebagian dari sarjana dan kalangan profesional.

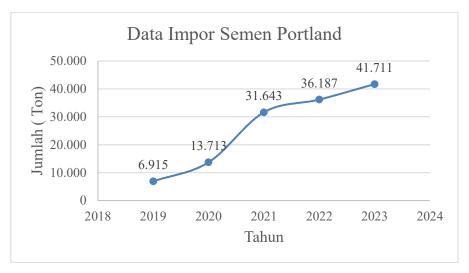
Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Gambar I. 1 Lokasi Pabrik Portland Composite Cement

I.4 Penentuan Kapasitas Produksi

I.4.1. Data Import

Data impor Semen Portland di Indonesia menurut Badan Pusat Statistik (2023), ditunjukkan pada Tabel I.3


Tabel I. 3 Data Impor Semen Portland

	Tabel Impor			
No	Tahun	Jumlah (Ton/tahun)	Pertumbuhan (%)	
1	2019	6.915		
2	2020	13.713	98,31	
3	2021	31.643	130,75	
4 2022		36.187	14,36	
5	2023	41.711	15,27	
Total		130.170	258,68	
Rata-rata		26.034	64,67	

Berdasarkan data tabel diatas didapatkan data Semen Portland di Indonesia selama 5 tahun terakhir. Data tersebut menunjukkan adanya peningkatan

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Gambar I. 2 Grafik Impor Semen Portland

Berdasarkan data impor tersebut maka dapat diperkirakan nilai impor Semen Portland pada 2028 yang didapatkan dari perhitungan *discounted method* dengan rumus (Ulrich, 1984):

 $F = P(1+i)^n$

Keterangan:

F = Nilai kebutuhan pada tahun ke-n

P = Besarnya data pada tahun sekarang (Ton/Tahun)

i = Rata-rata pertumbuhan

n = Selisih tahun

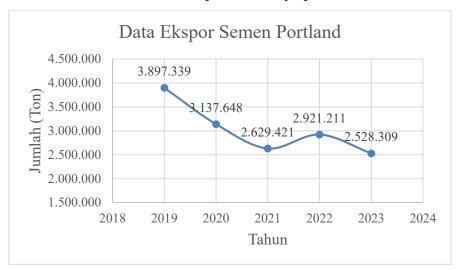
Sehingga perkiraan nilai import Semen portland pada tahun 2028 (m₁) adalah:

 $m_1 = 41.711 (1+i)^n$

 $m_1 = 41,711 (1+0,65)^5$

 $m_1 = 505.046 \text{ ton/tahun}$

I.4.2. Data Ekspor


Data ekspor Semen Portland di Indonesia menurut Badan Pusat Statistik (2023), ditunjukkan pada Tabel I.4

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Tabel I. 4 Data Ekspor Semen Portland

Tabel Ekspor				
No Tahun		Jumlah (Ton/tahun)	Pertumbuhan (%)	
1	2019	3.897.339		
2	2020	3.137.648	-19,49	
3	2021	2.629.421	-16,20	
4 2022		2.921.211	11,10	
5	2023	2.528.309	-13,45	
Total		15.113.927	-38,04	
Rata-rata		3.022.785	-9,5108	

Berdasarkan data tabel diatas didapatkan data Semen Portland di Indonesia selama 5 tahun terakhir. Data tersebut menunjukkan adanya penurunan.

Gambar I. 3 Grafik Ekspor Semen Portland

Untuk menghitung kebutuhan Semen Portland di Indonesia pada 2028

$$F = P(1+i)^n$$

Sehingga perkiraan nilai ekspor Semen portland pada tahun 2028 (m₄) adalah:

$$m_4 = 2.528.309 (1+i)^n$$

$$m_4 = 2.528.309 (1+(-0.0951)^5)$$

 $m_4 = 1.533.961 \text{ ton/tahun}$

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

I.4.3. Data Produksi Semen Portland di Indonesia

Terdapat beberapa produsen Semen Portland di Indonesia, namun diperkirakan kebutuhan Semen Portland akan terus meningkat setiap tahunnya, sehingga diperlukan pendirian pabrik baru, yang dapat mengurangi import Semen Portland

Tabel I. 5 Data Pabrik Semen Portland di Indonesia

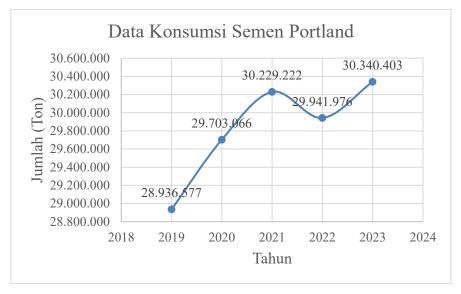
	Tabel Produksi			
No	Nama Perusahaan	Kapasitas (ton/tahun)		
1	PT. Semen Padang	9.257.000		
2	PT. Semen Gresik	13.000.000		
3	PT. Semen Tonasa	7.000.000		
4	PT. Semen Kupang	570.000		
5	PT. Lafarge Cement	3.000.000		
3	Indonesia	3.000.000		
	Total	32.827.000		

(Kemenperin, 2024)

I.4.4. Data Konsumsi Semen Portland

Data konsumsi Semen Portland di Indonesia ditunjukkan pada Tabel 1.6

Tabel I. 6 Data Konsumsi Semen Portland


	Tabel Konsumsi			
No	Tahun	Jumlah (Ton/tahun) Pertumbuhan (
1	2019	28.936.577	-	
2	2020	29.703.066 2,58		
3	2021	30.229.222	1,74	
4	2022	29.941.976	-0,96	
5 2023 30.340.403 1,31		1,31		
Total		149.151.243	4,67	

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Rata-rata	29.830.249	1,17

Berdasarkan data tabel diatas didapatkan data konsumsi Semen Portland di Indonesia selama 5 tahun terakhir. Data tersebut menunjukkan adanya peningkatan

Gambar I. 4 Grafik Konsumsi Semen Portland

Berdasarkan data impor tersebut maka dapat diperkirakan nilai konsumsi Semen portland pada 2028

$$F = P(1+i)^n$$

Sehingga perkiraan nilai konsumsi Semen portland pada tahun 2028 (m₅) adalah:

$$m_5 = P (1+i)^n$$

$$m_5 = 30.340.403 (1+0.017)^5$$

$$m_5 = 32.155.314$$
 ton/tahun

Pabrik direncanakan akan didirikan pada tahun 2028. Penentuan produksi dikakukan dengan *discounted method* dengan meninjau data yang ada yaitu jumlah ekspor, impor, produksi dan konsumsi bahan tersebut di Indonesia dengan menggunakan persamaan berikut:

$$m_1 + m_2 + m_3 = m_4 + m_5$$

Keterangan:

 m_1 = Nilai impor 2028 (ton/tahun)

m₂ = Produksi pabrik dalam negeri (ton/tahun)

m₃ = Kapasitas pabrik yang akan didirikan (ton/tahun)

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

m₄ = Nilai ekspor 2028 (ton/tahun)

m₅ = Nilai konsumsi 2028 (ton/tahun)

sehingga;

 $m_3 = (m_4 + m_5) - (m_1 + m_2)$

 $m_3 = (1.533.961 + 32.155.315) - (505.046 + 32.827.000)$

 $m_3 = 357.230 \text{ ton/tahun}$

Digenapkan menjadi 350.000 ton/tahun

Kapasitas pabrik yang akan dibangun pada tahun 2028 adalah 350.000 ton/tahun

I.5 Spesifikasi Bahan Baku dan Produk

1.5.1 Spesifikasi Bahan Baku

I.5.1.1. Batu Kapur/Gamping

Tabel I. 7 Komposisi Batu Kapur

Unsur Kimia	Kadar%
CaO	89,13
SiO ₂	0,23
Al ₂ O ₃	0,91
Fe ₂ O ₃	1,9
CaCO ₃	1,61
H ₂ O	6,22

(Widiarso, 2017)

Tabel I. 8 Sifat Fisika Dan Kimia Batu Kapur

Sifat	Keterangan		
	Fase	Padat	
	Warna	Putih	
Fisika	Kadar Air	7-10%	
1 ISIKa	Bulk Density	1,3 Ton/m ³	
	Massa Jenis	2,8 gr/cm ³	
	Kandungan Cao	89%	

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

	Kuat Tekan	31,6 N/mm ³
	Silika Rasio	2,6
	Alumina Rasio	2,57
Kimia	Kandungan	Batu kapur (limestone) adalah batuan sedimen dengan rumus kimia CaCO ₃ terdiri dari calcium carbonate
Kiinia	Reaksi	Mengalami reaksi kalsinasi yaitu dekomposisi batu kapur menjadi kalsium oksida dan karbon dioksida

1.5.1.1 Tanah Liat

Tabel I. 9 Komposisi Tanah Liat

Unsur Kimia	Kadar%
SiO ₂	61,43
Al ₂ O ₃	18,99
Fe ₂ O ₃	1,22
CaO	0,84
MgO	0,91
K ₂ O	3,21
Na ₂ O	0,15
H ₂ O	13,25

(PT. Benua Indah Tuban)

Tabel I. 10 Sifat Fisika dan Kimia Tanah Liat

Sifat	Keterangan		
	Fase	Padat	
Fisika	Warna	Coklat Kekuningan	
	Kadar Air	13% H ₂ O	

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

	Bulk Density	1,7 Ton/m ³	
Massa Jenis		1gr/cm ³	
	Ukuran Bahan	60 cm	
		Rentang pH sekitar 3,5-7	
Kimia	рН	permeabilitas (kemampuan	
		mengalir fluida) rendah	

1.5.2 Spesifikasi Bahan Tambahan

I.5.2.1 Gypsum (CaSO₄.2H₂O)

Tabel I. 11 Komposisi Gypsum

Unsur Kimia	Kadar%
2CaSO ₄ .H ₂ O	92,0
H ₂ O	8,00

(PT, Aneka Juragan Material)

Tabel I. 12 Sifat Fisika dan Kimia Gypsum

Sifat	Keterangan		
	Fase	Padat	
	Warna	Putih	
Fisika	Massa Jenis	0,85 gram/cm ³	
	Bulk Density	173 Ton/m ³	
	Ukuran Material	120 mesh	
Kimia		2,1 gram tiap liter pada suhu	
	Kelarutan	400oC kelarutan bertambah	
		dengan HCl atau HNO3	
	Ketahanan	Stabilitas kimia yang tinggi dan	
	Tecunanan	ketahanan terhadap korosi	

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

I.5.2.2 Fly Ash

Tabel I. 13 Komposisi Fly Ash PT. PJB Paiton Jawa Timur

Unsur Kimia	Kadar%
SiO ₂	46
CaO	6,79
MgO	25,73
Fe ₂ O ₃	10,11
Na ₂ O	2,15
SO ₃	2,77
Al ₂ O ₃	6,35
H ₂ O	0,10

(PT. PJB Paiton Jawa Timur)

Tabel I. 14 Sifat Fisika dan Kimia Fly Ash

Sifat	Keterangan		
Fisika	Fase	Padat	
	Warna	Abu-abu	
	Densitas	0.72 gr/cm^3	
	Ukuran Partikel	100 mesh	
Kimia	Maksimal	12%	
	Pengapian	1270	
	Kelarutan	Tidak larut dalam air	

1.5.3 Spesifikasi Bahan Koreksi

I.5.3.1 Pasir Silika

Tabel I. 15 Komposisi Pasir Silika

Unsur Kimia	Kadar%
SiO ₂	98,8
Al ₂ O ₃	0,29
Fe ₂ O ₃	0,25

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

TiO ₂	0,15
CaO	0,21
MgO	0,3

(CV. Mitra Usaha Mandiri)

Tabel I. 16 Sifat Fisika dan Kimia Pasir Silika

Sifat	Keterangan		
	Fase	Padat	
	Warna	Putih Bening	
Fisika	Berat Jenis	2,65 gram/cm ³	
Tisiku	Titik Lebur	1715°C	
	Bentuk Kristal	Hexagonal	
	Ukuran Bahan	20 mesh	
	Kandungan Air	Pasir silika memiliki kandungan	
		air yang rendah (sekitar 0,1%)	
Kimia		sehingga bahan sangat stabil	
		terhadap kelembapan dan korosi	
	pH suspensi air	pH sekitar 6,8-7,2	
	Kelarutan	Tidak larut dalam air	

I.5.2.3 Copper Slag

Tabel I. 17 Komposisi Copper slag

Unsur Kimia	Kadar%
SiO ₂	8
Fe ₂ O ₃	45,5
CaO	15,2
Al ₂ O ₃	29,8
H ₂ O	1,5

(PT. Smelting)

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Tabel I. 18 Sifat Fisika dan Kimia Copper Slag

Sifat	Keterangan		
	Fase	Padat	
	Warna	Hitam Kusam	
Fisika	Titik Lebur	1093°C	
	Ukuran Partikel	500 mesh	
	Densitas	1,2 gram/cm ³	
Kimia	Kelarutan	Tidak larut dalam air	

1.5.4 Spesifikasi Produk

Tabel I. 19 Spesifikasi Produk Semen Portland Composite

Sifat	Keterangan			
	Kehalusan dengan Blaine		280 m2/kg - 500 m2/kg	
	Kekekalan	Pemuaian	<0,8%	
	dengan autoklaf	Penyusustan	<0,2%	
	Waktu	Awal	>45 Menit	
	pengikatan	Akhir	<375 Menit	
Fisika	dengan vicat	Akiiii	\3/3 ivienit	
	Kuat tekan	Umur 3 Hari	12,7Mpa (130kg/cm ³)	
		Umur 7 Hari	19,6Mpa (200kg/cm ³)	
		Umur 28 Hari	27,5Mpa (280kg/cm ³)	
	Pengikatan semu, penetrasi akhir		<50%	
	Kandungan udara dalam mortar		12%	
Kimia	SO ₃		< 3%	
Kiiiia	Kadar Bahan Anorganik		< 35%	

Berdasarkan tabel I.19 diatas, dijelaskan dibawah ini pengaruh dari setiap sifat fisika dan sifat kimia pada produk semen PCC (Portland Composite Cement).

1. Kehalusan

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

Tingkat kehalusan berpengaruh terhadap laju hidrasi semen, di mana semakin tinggi tingkat kehalusan, semakin cepat pula proses hidrasi semen. Tingkat kehalusan ini dapat ditentukan melalui penyaringan awal sesuai dengan Standar Nasional Indonesia, yaitu menggunakan ayakan 200 mesh (0,075 mm). Alat yang digunakan untuk mengukur kehalusan adalah ayakan dan alat Blaine dengan nilai lebih dari 280 m²/kg.

2. Konsistensi Semen

Sifat ini merupakan kemampuan semen untuk mengalir setelah bercampur dengan air, pengujian ini dilakukan dengan alat vicat.

3. Pengikatan (setting)

Proses ini merupakan tanda terjadinya kekakuan pada semen. Ketika semen bereaksi dengan air, awalnya akan terbentuk lapisan plastis yang secara bertahap akan berubah menjadi kristal. Waktu yang dibutuhkan untuk pembentukan kristal atau munculnya kekakuan pada semen dikenal sebagai proses setting atau pengikatan.

4. Pemuaian dan Penyusutan

Pemuaian dan penyusutan pada semen merupakan proses perubahan volume yang terjadi selama semen mengalami hidrasi. Tingginya tingkat pemuaian dan penyusutan dapat menurunkan kekuatan semen, membuatnya menjadi lebih lemah, rentan terhadap kerusakan, retak, dan mudah pecah.

5. Penetrasi Akhir

Penetrasi akhir merupakan indikator kemampuan semen dalam menyerap air dan menjalani proses hidrasi. Semakin tinggi nilai penetrasi akhir, semakin baik kemampuan hidrasi semen, yang dapat meningkatkan kekuatan dan homogenitas struktur semen.

6. Kandungan Magnesium Oksida (MgO)

Kandungan Magnesium Oksida (MgO) dalam semen turut memengaruhi proses pemuaian dan penyusutan. Kadar MgO yang tinggi dapat memperbesar pemuaian semen, sementara kadar MgO yang rendah dapat menekan pemuaian dan meningkatkan penyusutan.

Semen Portland Composite dari Batu kapur dan tanah liat serta Copper Slag sebagai Filler dengan Proses Kering

7. Kandungan Sulfat Trioksida (SO₃)

Kandungan Sulfat Trioksida (SO₃) dalam semen juga berpengaruh terhadap kuat tekan semen. Kadar SO₃ yang tinggi dapat menurunkan kuat tekan semen.

(Badan Standart Nasional, 2022)