

BAB II TINJAUAN PUSTAKA

II.1 Udara

Udara merupakan campuran dari semua komponen gas pembentuk atmosfer yang terkadang mengandung partikel padatan pengotor berukuran mikro. Udara bersih adalah udara yang belum tercampur dengan gas-gas kontaminan yang berbahaya serta memiliki ciri-ciri, yaitu tidak berwarna, tidak berbau, terasa segar dan ringan saat dihirup sedangkan udara kotor adalah udara yang sudah tercampur dengan gas-gas kontaminan berbahaya.

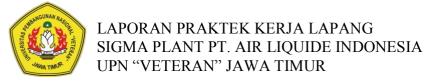
Tabel 2. 1 Komposisi Udara

Komponen	%Komposisi
Nitrogen (N ₂)	78,084
Oksigen (0 ₂)	20,9476
Argon (Ar)	0,934
Karbon dioksida (CO ₂)	0,04
Neon (Ne)	0,001818
Helium (He)	0,000524
Metana (CH ₄)	0,0002
Kripton (Kr)	0,000114
Hidrogen (H ₂)	0,00005
Dinitogen oksida (NO ₂)	0,00002
Xenon (Xe)	0,0000087
Gas Penjejak (CO , O_3 , SO_2 , NO_2 , NH_3 , $dan H_2O$)	0,000305

Sumber: (Pinti, 2021)

II.2 Oksigen

Oksigen adalah gas kedua terbanyak yang terkandung di udara. Sebagai sumber kehidupan seluruh makhluk hidup di dunia, oksigen memiliki sifat yang tidak berwarna, tidak berbau, tidak berasa, dan sangat mudah terbakar. Tingkat kemurnian tinggi oksigen sangat dibutuhkan sebagai bahan baku industri; namun, hal ini dapat beracun bagi makhluk hidup. Oksigen juga mudah bereaksi dengan unsur lainnya untuk membentuk senyawa. Sifat fisis oksigen meliputi reaktivitasnya terhadap unsur kimia lainnya, terutama hidrokarbon. Karena sifat ini, oksigen memerlukan penanganan khusus dalam proses produksi, penyimpanan, dan distribusinya.


Tabel 2. 2 Properti Fisik Oksigen

Properti	Nilai
Berat Molekul	31,999 g/mol
Densitas	1,429 g/L pada 0 °C
Volume spesifik (0°C, 1 atm)	$0.7 \text{ m}^3/\text{kg}$
Kalor spesifik (0°C)	0,277 kkal/kg
Suhu kritis	-118,95 °C
Tekanan kritis	50,14 atm
Kalor penguapan	50,9 cal/g pada -183 °C
Titik didih	-183 °C
Titik leleh	-218 °C

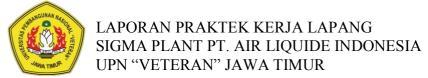
Sumber: (Perry, 2019)

II.3 Nitrogen

Nitrogen adalah unsur terbanyak yang terkandung dalam udara, yaitu sebanyak 78-79%. Gas ini memiliki sifat tidak berwarna, tidak berbau, tidak berasa, dan tidak mudah terbakar. Nitrogen juga banyak digunakan sebagai refrigeran pada siklus pencairan hidrogen dan helium karena sifatnya yang inert.

Meskipun nitrogen merupakan bahan kimia yang relatif tidak berbahaya, menghirup nitrogen murni dapat menyebabkan hilangnya kesadaran. Hal ini terjadi karena nitrogen dapat menggeser oksigen dari paru-paru, sehingga seseorang merasa tercekik akibat kekurangan oksigen, kondisi ini biasanya disebut sebagai gas lemas. Berikut merupakan sejumlah sifat fisis Nitrogen.

Tabel 2. 3 Properti Fisik Nitrogen


Properti	Nilai
Berat Molekul	28,014 g/mol
Densitas	1,251 g/L pada 0°C dan 1 atm
Volume spesifik (0°C, 1 atm)	0,799 m³/kg
Suhu kritis	-210 °C
Tekanan kritis	0,127 atm
Kalor penguapan	5,57 kJ/mol pada -196°C
Kapasitas Kalor Molar	29,124 J/mol.K
Titik didih	-196 °C
Titik leleh	-210°C

Sumber: (Perry, 2019)

Sejumlah aplikasi nitrogen adalah sebagai bahan baku pembuatan amonia, gas untuk penyimpanan bahan makanan, pengeras plastik sebelum dihancurkan dan digiling, dll.

II.4 Sistem Pendingin Udara

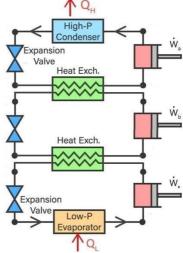
Salah satu pemisahan unsur-unsur yang terkandung di udara dilakukan dengan cara distilasi kriogenik, yaitu dengan memanfaatkan titik embun (Dew Point) yang berbeda-beda dari masing-masing unsur. Oleh karena itu, dibutuhkan sistem pendinginan udara untuk mencapai kondisi kriogenik tersebut. Umumnya, terdapat dua jenis proses pendinginan, yaitu dengan pertukaran panas dan tanpa pertukaran panas. Air Liquide internsional menerapkan kedua teknologi tersebut

untuk menghemat energi yang dibutuhkan untuk mendinginkan udara supaya mencapai suhu kriogenik. Sistem pendinginan udara dengan pertukaran panas dilakukan dengan menggunakan unit Main Exchanger dengan memanfaatkan aliran dingin oksigen cair dan Waste Gas yang dihasilkan oleh unit Distilasi sedangkan sistem pendinginan udara tanpa pertukaran panas dilakukan dengan cara metode ekspansi gas, yaitu ekspansi adiabatik dan ekspansi non adiabatik.

Ekspansi adiabatik adalah sistem ekspansi dengan tidak adanya panas yang melewati sistem dan kerja yang diterima oleh sistem akan diubah seluruhnya menjadi suatu energi. Ekspansi jenis ini digunakan pada Turbin ekspander. Proses ekspansi ini terjadi secara reversibel dan adiabatis pada kondisi ideal sehingga dapat disebut pula sebagai ekspansi isentropik. Selama proses berlangsung, sistem akan menghasilkan energi yang biasanya digunakan untuk menghasilkan listrik untuk menggerakkan beberapa mesin, seperti kompresor, generator, blower, dll. Ketika gas bertekanan diekspansi oleh turbin ekspander, maka dapat terjadi pendinginan.

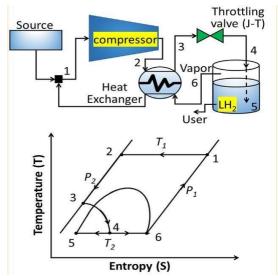
Ekspansi non adiabatik adalah sistem ekspansi dengan adanya panas yang melewati sistem dan kerja yang diterima oleh sistem akan diubah sebagian menjadi bentuk panas yang keluar melalui batas sistem. Proses ekspansi ini biasa disebut ekspansi isentalpik, yaitu ketika gas diekspansi melalui lubang kecil menuju tekanan yang lebih rendah, maka suhu dari gas tersebut akan berkurang dan gas menjadi lebih dingin. Efek dari penurunan suhu akibat penurunan tekanan ini biasa disebut efek Joule-Thomson. Semakin besar penurunan tekanan yang terjadi, maka semakin besar pula penurunan suhunya.

II.5 Sistem Pencairan Udara

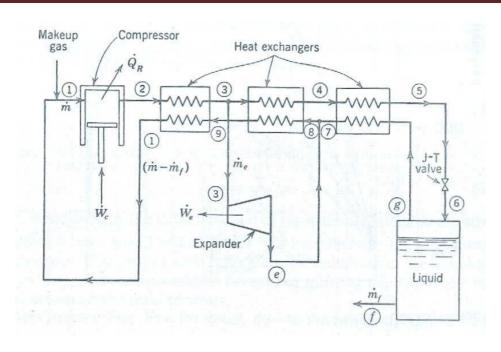

Dalam teknologi kriogenik, terdapat beberapa metode yang digunakan untuk mencairkan gas melalui proses pendinginan dan penurunan tekanan. Tiga metode umum yang sering digunakan adalah sistem Claude, sistem Cascade, dan sistem Linde-Hampson. Ketiga sistem ini memiliki mekanisme kerja yang berbeda dalam mencapai suhu rendah yang dibutuhkan untuk mencairkan gas, seperti nitrogen, oksigen, atau helium. Meskipun memiliki tujuan yang sama, yaitu pencairan gas, ketiganya berbeda dalam hal efisiensi, kompleksitas, dan cara pengaturan suhu. Perbedaan ini dapat dilihat dari cara kompresi, ekspansi, dan penggunaan penukar panas atau turbin. Berikut ini adalah perbandingan dalam bentuk tabel yang merangkum karakteristik utama dari masing-masing sistem.

Tabel 2. 4 Perbandingan Sistem Pencairan Udara

Aspek	Sistem Claude	Sistem Cascade	Sistem Linde- Hampson
Prinsip Utama	Ekspansi adiabatik melalui turbin dan ekspansi isentropik	Pendinginan bertahap dengan beberapa gas refrigeran	Ekspansi isenthalpik melalui katup (efek Joule- Thomson)
Proses Kompresi	Kompresi gas diikuti dengan ekspansi menggunakan turbin	Beberapa tahapan pendinginan dengan gas refrigeran	Kompresi gas diikuti dengan pendinginan bertahap
Ekspansi Gas	Menggunakan turbin untuk ekspansi, menghasilkan kerja mekanik	Tidak ada ekspansi signifikan, hanya pendinginan bertahap	Ekspansi melalui katup ekspansi (Joule-Thomson valve)
Efisiensi Energi	Tinggi (karena turbin menghasilkan kerja yang mengurangi	Efisien untuk suhu sangat rendah (menggunakan beberapa	Lebih rendah karena tidak menggunakan turbin



	konsumsi energi)	refrigeran)	
Kompleksitas Sistem	Lebih kompleks (memerlukan turbin dan penukar panas)	Sangat kompleks (menggunakan beberapa gas refrigeran)	Relatif sederhana (tidak ada turbin, hanya katup ekspansi)
Keunggulan	Lebih efisien, cocok untuk volume gas besar	Mampu mencapai suhu sangat rendah untuk gas spesifik	Sederhana dan cocok untuk aplikasi yang lebih kecil
Kelemahan	Lebih mahal dan kompleks dalam desain dan operasional	Sangat kompleks dan memerlukan manajemen gas refrigeran yang baik	Kurang efisien dibandingkan sistem lain
Contoh Aplikasi	Industri pencairan udara dan gas skala besar (misalnya nitrogen, oksigen)	Pencairan gas-gas dengan titik didih rendah, seperti helium	Pencairan gas dalam aplikasi sederhana dan laboratorium kecil


Gambar 2. 1 Skema Sistem Cascade

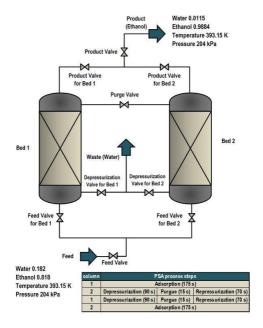
Gambar 2. 2 Skema Sistem Linde Hampson

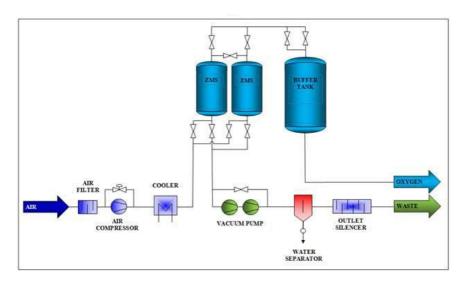
Gambar 2. 3 Skema Sistem Claude

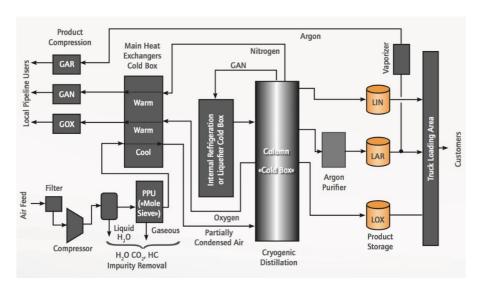

II.1.1 Sistem Pemisahan Udara

Dalam industri pemurnian dan pemisahan gas, terdapat berbagai teknologi yang digunakan untuk memperoleh gas murni dari campurannya. Tiga metode utama yang sering digunakan adalah Pressure Swing Adsorption (PSA), Vacuum Pressure Swing Adsorption (VPSA), dan Distilasi Kriogenik. Ketiganya berbeda dalam prinsip kerja, efisiensi energi, serta skala aplikasi. PSA dan VPSA memanfaatkan prinsip adsorpsi untuk memisahkan gas, sementara distilasi kriogenik menggunakan proses pencairan dan penguapan kembali pada suhu sangat rendah. Masing-masing metode memiliki keunggulan yang spesifik tergantung pada kebutuhan pemurnian gas, seperti oksigen, nitrogen, dan hidrogen. Berikut ini adalah perbandingan ketiga metode dalam bentuk tabel yang mencakup aspek-aspek utama dari setiap teknologi.

Tabel 2. 5 Perbandingan Sistem Pemisahan Udara


Aspek	Pressure Swing Adsorption (PSA)	Vacuum Pressure Swing Adsorption (VPSA)	Distilasi Kriogenik
Prinsip Utama	Adsorpsi gas pada adsorben (zeolit atau karbon aktif) dengan perubahan tekanan	Adsorpsi gas dengan perubahan tekanan dan penggunaan vakum	Pemisahan gas berdasarkan titik didih melalui pendinginan kriogenik
Proses Kerja	Menggunakan siklus tekanan tinggi untuk mengadsorpsi gas target dan tekanan rendah untuk melepaskan gas teradsorpsi	Menggunakan tekanan rendah dan vakum untuk lebih efisien mengadsorpsi dan melepaskan gas	Pencairan gas pada suhu rendah dan pemisahan melalui distilasi fraksional
Efisiensi Energi	Moderat (lebih hemat energi daripada distilasi kriogenik)	Lebih hemat energi dibanding PSA karena menggunakan vakum	Konsumsi energi tinggi (memerlukan pendinginan ekstrem)
Kompresor/ Vakum	Menggunakan kompresor untuk meningkatkan tekanan	Menggunakan kompresor dan sistem vakum	Menggunakan kompresor dan sistem refrigerasi untuk pencairan gas
Kemurnian Gas	Dapat mencapai kemurnian gas sekitar 90–95% (tergantung gas)	Dapat mencapai kemurnian lebih tinggi dari PSA, sekitar 93–95%	Dapat mencapai kemurnian gas hingga 99,9% atau lebih tinggi
Skala Aplikasi	Umumnya digunakan untuk aplikasi skala kecil hingga menengah	Digunakan untuk skala menengah dan efisiensi lebih baik daripada PSA	Cocok untuk aplikasi skala besar, terutama di industri


Keunggulan	Proses sederhana dan biaya awal lebih rendah	Lebih efisien secara energi dan mampu menghasilkan gas dengan kemurnian lebih tinggi	Kemurnian gas sangat tinggi dan volume produksi besar
Kelemahan	Kurang efisien dalam hal kemurnian gas dan memerlukan pemeliharaan berkala pada adsorben	Memerlukan sistem vakum yang lebih kompleks	Investasi awal mahal dan konsumsi energi tinggi



Gambar 2. 4 Skema PSA

Gambar 2. 5 Skema VPSA

Gambar 2. 6 Skema Distilasi Kriogenik