

BAB IX

URAIAN TUGAS KHUSUS

IX.1 Tugas Khusus Evaluasi Heat Exchanger – 05

Heat Exchanger adalah alat penukar panas antara fluida panas dan fluida dingin tanpa mencampurkan kedua fluida tersebut. Efisiensi penggunaan dan pemanfaatan panas dari proses heat exchanger dapat mempengaruhi ekonomi operasi pada kilang. Pengoperasian dan pemanfaatan heat exchanger secara optimum akan meningkatkan efisiensi energi pada suatu unit proses yang pada akhirnya berpengaruh terhadap operating cost unit proses maupun kilang tersebut. Pada alat heat exchanger memiliki pengaruh yang cukup besar terhadap keberhasilan dari keseluruhan rangkaian proses pada suatu industri. Jika terjadi kegagalan operasi pada peralatan ini baik mekanik maupun operasional dapat menyebabkan berhentinya unit operasi. Selain itu dalam suatu kilang minyak, proses perpindahan panas sangat penting dalam rangka energi konservasi, keperluan proses, persyaratan keamanan dan perlindungan terhadap lingkungan. Oleh karena itu suatu alat penukar kalor (Heat Exchanger) dituntut untuk memiliki kinerja yang baik agar diperoleh hasil yang maksimal serta dapat menunjang penuh terhadap suatu unit operasi.

Prinsip kerja dari alat penukar kalor yaitu memindahkan panas dari dua fluida pada temperatur berbeda di mana transfer panas dapat dilakukan secara langsung ataupun tidak langsung:

a. Secara kontak langsung

Panas yang dipindahkan antara fluida panas dan dingin melalui permukaan kontak langsung berarti tidak ada dinding antara kedua fluida. Transfer panas yang terjadi yaitu melalui interfase/ penghubung antara kedua fluida. Contoh: aliran steam pada kontak langsung yaitu 2 zat cair yang immiscible (tidak dapat bercampur), gas-liquid, dan partikel padat-kombinasi fluida.

b. Secara kontak tak langsung

Perpindahan panas terjadi antara fluida panas dan dingin yang mengalir melalui dinding pemisah. Dalam sistem ini, proses perpindahan panas terjadi secara konveksi dan konduksi.

IX.2 Perhitungan Heat Exchanger

Perhitungan kinerja *Heat Exchanger 05* dilakukan untuk membandingkan harga *overall coefficient* (Uc) aktual dengan Ud serta untuk mengetahui *fouling factor* atau *dirt factor* (Rd). *Fouling* adalah peristiwa terakumulasinya padatan yang tidak dikehendaki di permukaan Heat Exchanger yang berkontak dengan fluida kerja, termasuk permukaan *Heat Exchanger*. Peristiwa tersebut adalah pengendapan, pengerakan, korosi, polimerisasi, dan proses biologi. Peristiwa ini dapat menurunkan kinerja dari *Heat Exchanger*. Dengan menghitunga Rd dapat diketahui untuk kerja dan efisiensi aktual *Heat Exchanger*, dengan demikian dapat diketahui waktu yang tepat untuk melakukan cleaning sebagai akibat nilai Rd yang ditentukan dapat dilakukan perhitungan bersarkan data actual dari hasil pengamatan dilapangan.

Dari data yang diperoleh baik data primer maupun sekunder, kemudian dilakukan perngolahan data melalui perhitungan sesuai metode yang terdapat dalam literatur dengan langkah-langkah sebagai berikut:

1. Beban panas (*Heat duty*)

Heat Duty merupakan besarnya energi atau panas yang ditransfer per waktu. Heat Duty dapat dihitung baik pada fluida dingin atau fluida panas. Saat operasional lebih kecil dibandingkan dengan heat duty pada kondisi desain, kemungkinan terjadi heat losses, fouling dalam tube, penurunan laju alir (fluida panas atau dingin), dan lain-lain. Heat duty dapat meningkat seiring bertambahnya kapasitas. Untuk menghitung kerja alat penukar panas sebagai berikut:

$$Q = W. Cp. \Delta T....(1)$$

Keterangan:

Q: Jumlah transfer panas (Btu/hr)
W: Jumlah aliran fluida (lb/hr)

STANGUNAN MASIGNAN NASIGNAN NA

PRAKTEK KERJA LAPANGAN

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

Cp : Specific heat

ΔT :Perbedaan suhu masuk dan keluar fluida (°F)

2. Log Mean Temperature Different (LMTD)

Dikarenakan suhu fluida dalam alat penukar panas berbeda beda dari satu titik ke titik lainya, makan untuk mengetahui perbedaan suhu rata-rata fluida yang mengalir dalam Heat Exchanger adalah menggunakan persamaan:

$$LMTD = \frac{\Delta t2 - \Delta t1}{\ln\left(\frac{\Delta t2}{\Delta t1}\right)}...(2)$$

Keterangan:

Δt1 : Beda suhu fluida suhu rendah (°F)

Δt2: Beda suhu fluida suhu tinggi (°F)

Kemudian untuk mengetahui koreksi LMTD adalah:

$$R = \frac{T_1 - T_2}{t_2 - t_1}, S = \frac{t_2 - t_1}{T_1 - T_2}...(3)$$

Keterangan:

R dan S: Efisiensi temperatur

Ft : Faktor koreksi beda temperatur

Dari harga R dan S akan diperoleh harga Ft sesuai dengan fig.18 pada Kern.

$$\Delta T L M T D = L M T D . F t \dots (4)$$

3. Caloric Temperature (Suhu rata-rata)

Caloric temperature adalah temperatur yang dipakai untuk menentukan sifat-sifat fluida yang mengalir. Menghitungan temperatur dengan menghitung Δtc dan Δth lalu menghitung Kc dan Fc. Kc ditentukan oleh grafik fig. 17 Kern. Adapun untuk menentukan Tc menggunakan persamaan sebagai berikut :

$$\Delta tc = T2 - t1....(5)$$

$$\Delta th = T1 - t2$$
....(6)

Hubungan antara Kc dan Δtc dan Δth diperoleh nilai Fc :

1) Caloric untuk fluida panas (Tc)

$$Tc = T2 + Fc(T1 - T2)$$
....(7)

2) Caloric temperature untuk fluida dingin (tc)

$$tc = t1 + Fc.(t2 - t1)....(8)$$

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

Keterangan:

Fc: Coloric Temperature (°F)

T1: Suhu masuk fluida panas (°F)

T2: Suhu keluar fluida panas (°F)

t1 : Suhu masuk fluida dingin (°F)

t2 : Suhu keluar fluida panas (°F)

Δth: Perbedaan temperatur fluida dingin (°F)

Δtc : Perbedaan temperatur fluida panas (°F)

4. Flow Area

Flow area yaitu luasan yang dilalui oleh masing masing fluida. Panjang flow area diambil sama dengan jarak baffle (B). Tube pitch merupakan jumlah dari diameter tube dan jarak antar tube (Ci).

1) Menentukan luas aliran dalam shell

$$a_s = \frac{ID.C.B}{n' \cdot 144 Pt}$$
....(9)

Keterangan:

as: Flow area shell (ft²)

ID: Inside diameter shell (ft)

Ci : Clearance atau jarak antar tube PT-OP(inch)

B: Baffle spaces (inch)

Pt: Pitch atau jarak antar titik pusat tube ke tube (inch)

2) Menentukan luas aliran dalam tube

$$a_t = \frac{Nt.a'}{a44.n}...(10)$$

Keterangan:

at: Flow area tube (ft²)

Nt: Jumlah tube

a': Flow area per-tube(ft²,tabel 10 Kern)

n: Jumlah pass

144 : Konversi dari inch² kw ft²

SALINGUNAN MAGOLINE OF THE PROPERTY OF THE PRO

PRAKTEK KERJA LAPANGAN

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

5. Mass Velocity

Kecepatan aliran massa dari zat berubah secara terus-menerus sepanjang aliran melalui baffle.

1) Menentukan massa velocity pada shell

$$Gs = \frac{Ws}{as}....(11)$$

Keterangan:

Gs: Mass velocity shell

Ws: Flow rate atau kapasitas di shell(lb/hr)

as: Flow area shell (ft2)

2) Menentukan massa veloity pada tube

$$Gt = \frac{Wt}{at}....(12)$$

Keterangan:

Gt: Massa velocity tube (lb/hr.ft²)

Wt: Flow rate atau kapasitas di tube (lb/hr)

6. Bilangan Reynold

1) Pada bagian shell

$$Res = \frac{De.Gs}{\mu}....(13)$$

Keterangan:

Res: Reynold number di shell

De: Diameter equivalent (ft)

Gs: Mass velocity shell (lb/hr.ft²)

μ: Viskositas fluida bagian shell pada suhu Tc (lb/hr.ft²)

dimana diameter equivalent dicari dengan fig.28 Kern atau dihitung dengan persamaan :

$$De = \frac{4 \times (\frac{1}{2}PT \times 0.86PT - \frac{1}{2}\pi do^{2})}{\frac{1}{2}\pi do}.$$
 (14)

Keterangan:

De: Diameter equivalent (ft)

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

Pt: Pitch atau antar titik pusat tube ke tube (inch)

Do: diameter luar tube (inch)

2) Pada bagian shell

$$Ret = \frac{Gt \times di}{\pi}....(15)$$

Keterangan:

Ret: Reynold number di tube

D: Inside diameter tube (ft,tabel 10 Kern)

Gt: Mass velocity tube (lb/hr.ft²)

μ : Viskositas fluida bagian tube pada suhu tc (lb/hr.ft²)

7. Faktor Dimensi Perpindahan Panas

1) Pada bagian shell

Ntuk fluida panas, faktor dimensi perpindahan panas (jH) diperoleh dari fig.28 Kern dengan mengetahui terlebih dahulu harga Res.

2) Pada bagian tube

Untuk fluida dingin, faktor dimensi perpindahan panas (Jh) diperoleh dari fig.24 Kern dengan mengetahui lebih dahulu harga Ret dan L/D.

8. Koefisien Panas

1) Pada bagian shell

$$ho = \frac{k}{De} \times \left(\frac{Cp \times \mu}{k}\right)^{\frac{1}{3}} \times \emptyset s....(16)$$

Keterangan:

ho: Koefisien transfer panas fluida bagian luar tube (Btu/hr.ft².°F)

iH: Faktor transfer panas

K :Konduktivitas panas fluida bagian dalam tube pada suhu Tc (Btu/lb.°F)

Cp: Panas spesifik fluida bagian tube pada suhu Tc (lb/hr.ft)

μ : Viskositas fluida bagian tube pada suhu Tw (Llb/hr.ft)

2) Pada bagian tube

$$hi = \frac{k}{D} \times \left(\frac{Cp \times \mu}{k}\right)^{\frac{1}{3}} \times \emptyset t \dots (17)$$

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

Keterangan:

hi: Koefisien transfer panas fluida bagian dalam tube (Btu/hr.ft².°F)

¡H: Faktor transfer panas

K:Konduktivitas panas fluida bagian dalam tube pada suhu tc (Btu/lb.°F)

Cp: Panas spesifik fluida bagian tube pada suhu Tc (lb/hr.ft)

μ : Viskositas fluida bagian tube pada suhu Tw (Llb/hr.ft)

Dimana Øs dan Øt didapatkan dari persamaan:

Øs dan Øt =
$$(\frac{\mu}{\mu W})^{0,14}$$
....(18)

Keterangan:

μ : Viskositas fluida bagian tube pada suhu Tc(lb/hr/ft)

μw: Viskositas fluida bagian tube pada suhu Tw (lb/hr.ft)

9. Wall Temperature

$$tw = tc + \frac{\frac{ho}{\emptyset s}}{\frac{hio}{\emptyset t} + \frac{hio}{\emptyset s}} x (Tc - tc) \dots (19)$$

Keterangan:

tw: Suhu dingin tube (°F)

Tc: Suhu kolorik fluida panas (°F)

tc : Suhu kolorik fluida dingin (°F)

 $\emptyset s$: Perbandingan viskositas fluida dalam shell dengan viskositas pada suhu dinding shell

 $\emptyset t$: Perbandingan viskositas fluida dalam tube dengan viskositas pada suhu dinding tube

10. Koefisien Perpindahan Panas Terkoreksi

1) Pada lapisan dinding luar tube (shell)

$$ho = \frac{ho}{\phi s} x \phi s \dots (20)$$

2) Pada lapisan dinding dalam tube (tube)

$$hi = \frac{hi}{\phi t} x \phi t \tag{21}$$

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

11. Clean Overall Coefficient

Clean overall coefficient meruopakan koefisien panas menhyeluruh pada awal Heat Exchanger yang dipakai (masih bersih) biasanya ditentukan oleh besarnya tahanan konversi ho dan hio, sedangkan tahanan konduksi diabaikan karena sangat kecil bila dibandingkan dengan tahanan konveksi.

$$Uc = \frac{ho \ x \ hio}{ho + hio}...(22)$$

Keterangan:

Uc : Clean overall heat transfer coefficient (Btu/ht/ f^2 . °F)

Hio: Koefisien koreksi perpindahanpanas dalam tube (Btu/hr. ft^2 . °F)

Ho : Koefisien transfer panas fluida bagian luar tube (Btu/hr. ft^2 . °F)

12. Design atau Dirty Overall Ccoefficient

Design atau dirty overall coefficient merupakan koefisien perpindahan panas menyeluruh setelah terjadi pengotoran pada Heat Exchanger. Besarnya Ud lebih kecil dari Uc.

$$UD = \frac{Qt}{A \times \Delta T L M T D} \tag{23}$$

Keterangan:

Qt : Jumlah transfer panas (Btu/hr)

A : Luas permukaan perpindahan panas (ft^2)

 ΔT : LMTD koreksi

13. Fouling Factor atau Dirt Factor

Rd atau fouling factor merupakan resistance heat exchanger yang dimaksudkan untuk mereduksi krosifitas akibat dari interaksi antara fluida dengan dinding heat exchanger, tetapi setelah digunakan bebera[a lama Rd yang besar akan menghambat laju perpindahan panas antara fluida panas dan fluida yang dingin. Besarnya fouling factor tergantung dari sifat fluida, kecepatan aliran, dan waktu operasi.

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

$$Rd = \frac{Uc - Ud}{Uc \times Ud}.$$
 (24)

Keterangan:

Rd : Dirt factor (hr. ft^2 . °F/Btu)

Uc : Clean overall heat transfer coefficient (Btu/hr. ft^2 . °F)

Ud: Actual overall heat transfer coefficient (Btu/hr. ft^2 . °F)

14. Pressure Drop

Penurunan tekanan baik di shell maupun di tube tidak boleh melebihi batas pressure drop yang diijinkan. Tekanan dalam heat exchanger merupakan driving force bagi aliran fluida di shell maupun di tube. Jika ppressure drop lebih besar dari yang diijinkan maka akan menyebabkan laju alir massa (lb/hr) inket fluida dishell dan tube jauh berbeda dengan laju alir massa outlet masing-masing fluida. Hal tersebut akan menurunkan performance dari peralatan heat exchanger tersebut.

1) Pada bagian shell

Penurunan tekanan bagian shell dinyatakan dengan rumus:

$$N + 1 = \frac{12 \times L}{B}....(25)$$

Keterangan:

N : Jumlah baffle

L : Panjang tube (inch)

B : Jarak antar tube (inch)

$$\Delta Ps = \frac{f \times Gs^2 \times IDs \times (N+1)}{5,22 \times 10^{10} \times De \times s \times \phi s}....(26)$$

Keterangan:

 ΔPs : Penurunan tekanan bagian shell (psi)

S: Specific gravity bagian shell

 ${\it F}$: Faktor gesekan aliran massa tiap satuan luas dalam shell (${\it ft}^2$ atau

 $inch^2$)

Gs : Kecepatan aliran massa tiap satuan luas dalam shell (lb/hr. ft^2)

N : Jumlah baffle bagian shell

Ds : Diameter shell bagian dalam (ft)

PUSAT PENGEMBANGAN SUMBER DAYA MANUSIA MINYAK DAN GAS BUMI

De : Diameter ekuivalen bagian shell (ft)

2) Pada Bagian Tube

Penurunan tekanan bagian tube dinyatakan dengan rumus =

$$\Delta Pt = \frac{f \, x \, Gt^2 \, x \, L \, x \, n}{5,22 \, x \, 10^{10} \, x \, Di \, x \, s \, x \, \emptyset T}....(27)$$

$$\Delta PT = \Delta Pt + \Delta Pr$$
....(28)

Keterangan:

 ΔPT : Total penurunan bagian tube (psi)

 ΔPt : Penurunan tekanan bagian tube (psi)

 ΔPr : Return pressure loss (psi)

S : Specific gravity dalam tube

F : Faktor gesekan aliran dalam tube $(ft^2 \text{ atau } inch^2)$

Gt : Kecepatan aliran massa tiap satuan luas dalam tube (lb/hr. ft^2)

L : Panjang tube (ft)

D : Diameter tube bagian dalam (ft)

IX.3 Hasil Pengamatan

1. Spesifikasi Alat Heat Exchanger 05

Tabel IV.1 Spesifikasi Alat *Heat Exchanger 05*

SHELL (RESIDU)				
Diameter Luar (ODs)	37,402	in		
Diameter Dalam (IDs)	36,457	in		
Jumlah Baffle (Ns)	4	buah		
Jarak Antar Baffle (B)	25,886	in		
Jumlah Passes (n)	1	buah		
TUBE (CRUDE OIL)				
Diameter Luar (ODs)	1	in		
Panjang Tube (L)	11,482	ft		
Jumlah Tube (Nt)	400	buah		
BWG	12			
Pitch (Pt)	1,25	in		
Jarak Antar Tube (C")	0,25	in		
Jumlah Passes (n)	1	ft		

2. Data Pengamatan Heat Exchanger 05

Tabel IV.2 Data Pengamatan Heat Exchanger 05

SHELL (RESIDU)					
Waktu Pengamatan	Flowrate (lb/hr)	T1 in (°C)	T2 out (°C)	Densitas (Kg/L)	
Rabu, 10 Januari 2024	2764,703	220	145	0,9181	
Kamis, 11 Januari 2024	7372,184	235	172	0,9128	
Jumat, 12 Januari 2024	6551,271	245	140	0,9092	
Senin, 15 Januari 2024	2614,061	227	145	0,9147	
Selasa, 16 Januari 2024	4827,115	228	137	0,9081	
Rata-Rata	4825,867	231	147,8	0,91258	
TUBE (CRUDE OIL)					
Waktu Pengamatan	Flowrate	t1 in	t2 out	Densitas	
Waktu I engamatan	(lb/hr)	(°C)	(°C)	(Kg/L)	
Rabu, 10 Januari 2024	18190,372	90	140	0,8392	
Kamis, 11 Januari 2024	21714,732	88	137	0,8409	
Jumat, 12 Januari 2024	23094,803	95	142	0,8401	
Senin, 15 Januari 2024	20398,064	90	120	0,8401	
Selasa, 16 Januari 2024	20999,017	95	121	0,8303	
Rata-Rata	20879,398	91,6	132	0,83812	

3. Hasil Perhitungan

Tabel IV.3 Hasil Perhitungan Heat Exchanger 05

No	Hasil	Shell (Residu)	Tube (Crude Oil)	Satuan
1.	Temperature Average	372,92	233,24	°F
2.	Specific Gravity	0,9129	0,8385	
3.	°API	23,483	37,3	
4.	Densitas (ρ)	56,97	52,322	lb/ft ³
5.	Mass Flow (W)	4830,4863	20879,094	lb/jam
6.	Panas yang dibutuhkan (Q)	426814,04	835080	Btu/jam
7.	LMTD	136,0642		°F
8.	ΔLMTD	122,4578		°F
9.	Caloric Temperature	359,4416	226,6952	°F
10.	Flow Area	1,3107	1,3305	ft2
11.	Mass Velocity (G)	3685,3393	15692,012	lb/jam ft²
12.	Bilangan Reynold (Re)	75,8388	527,9892	

13.	Wall Temperature (tw)	318,4051		°F
14.	Clear Overall Coefficient (Uc)	5,5343		Btu/jam ft ² °F
15.	Dirty Overall Coefficient (Ud)	4,0215		Btu/jam ft² °F
16.	Fouling Factor(Rd)	0,06797		Btu/jam ft ² °F
17.	Efisiensi	51,1105		%
18.	ΔΡ	0,00054	0,00028	Psi
19.	ΔP Total	0,00089		Psi

IX.4 Pembahasan

Pada penelitian heat exchanger yang diamati yaitu *heat exchanger-05*. Berjenis shell and tube yang disusun secara seri. Berfungsi untuk memanaskan crude oil dengan memanfaatkan panas yang berasal dari residu, sebelum crude oil dipanaskan dalam furnance. Shell dilalui oleh fluida panas berupa residu, pada tube dilalui fluida dingin yaitu berupa crude oil. Heat exchanger-05 berfungsi juga untuk menurunkan suhu Residu sebelum masuk cooler. Untuk mengetahui seberapa besar penurunan kinerja heat excanger-05, diperlukan analisis evaluasi dengan perhitungan.

Berdasarkan data dilapangan dan diolah didapat hasil, yaitu perhitungan panas yang dibutuhkan oleh crude oil sebesar 835080 Btu/jam sedangkan panas yang dibutuhkan oleh residu sebesar 426814,04 Btu/jam. Effisiensi panas sebesar 51,1105 %. Fouling factor (RD) sebesar 0,06797 Btu/jam.ft² °F. Koefisien perpindahan panas pada saat kondisi bersih (Uc) sebesar 5,5343 Btu/jam ft² °F, sedangkan Koefisien perpindahan panas pada saat kotor (Ud) sebesar 4,0215 Btu/jam ft² °F. Pressure drop pada shell (residu) sebesar 0,00054 Psi dan pressure drop pada tube(Crude Oil) sebesar 0,00028 Psi.

Berdasarkan hasil perhitungan, dapat diketahui bahwa perhitungan factor pengotor pada heat exchanger - 05 (Rd) yaitu sebesar 0,06797 Btu/jam.ft² °F dimana melebihi nilai Rd yang diizinkan yaitu 0,002. Hal tersebut dapat disimpulkan bahwa nilai Rd pada perhitungan masih belum memenuhi nilai Rd yang diizinkan. Nilai Rd yang cukup besar menunjukkan bahwa heat exchanger – 05 memiliki faktor pengotor atau impurities yang cukup banyak. Impurities tersebut

berasal dari kerak kerak api yang berasal dari aliran steam atau berkarat nya alat yang memiliki kadar yang cukup tinggi sehingga dapat mempengaruhi nilai dari fouling factor pada alat heat exchanger tersebut.

Nilai factor pengotor sangat berpengaruh untuk proses perpindahan panas yang masuk kedalam shell maupun tube. Nilai fouling factor berpengaruh pada pressure drop. Semakin tinggi pressure drop, maka akan semakin tinggi fouling factor. Hal tersebut disebabkan karena adanya impurities yang terbawa oleh fluida yang menyebabkan friksi pada tube dan shell akan semakin banyak dan perpindahan panas akan terganggu. Nilai pressure drop yang didapatkan pada perhitungan, diketahui masih dibawah nilai standar yang diperbolehkan, yaitu sebesar 10 Psi. hal tersebut dapat disimpulkan bahwa heat exchanger-05 masih layak dioperasikan karena tidak melebihi nilai standar yang diperbolehkan.

Perpindahan panas terjadi pada tube, sehingga pada shell mengalami percepatan proses transfer panas. Pada tube lebih lambat dalam menyerap panas sehingga terjadinya perpindahan panas ke lingkungan. Coeffisien clean overall sebesar 5,5343 Btu/jam ft² °F hal tersebut dapat diketahui bahwa hantaran perpindahan panas dalam keadaan kotor sehingga (fouling factor atau Rd) kotoran yang menempel pada bagian permukaan dinding shell dan tube akan berpengaruh pada perpindahan panas yang terjadi. Berdasarkan hasil tersebut, dapat diketahui bahwa hasil dirt factor hasil perhitungan lebih besar dari dirt factor yang diizinkan, sehingga berdasarkan perhitungan lebih baik dilakukan pembersihan pada unit kilang secara teratur agar laju perpindahan panas hot fluid dan cold fluid menjadi lebih optimal.