BAB II

TINJAUAN PUSTAKA

II.1 Uraian Proses

Unit produksi NPK phonska I diresmikan pada tahun 2000 dengan kapasitas awal produksi 330.000 ton/tahun, kemudian mengalami modifikasi pada tahun 2007 sehingga kapasitas produksi sampai saat ini 450.000 ton/tahun. Secara umum inti proses pembentukan *slurry* pupuk NPK phonska berlangsung di dalam reaktor *preneutralizer* (PN) kemudian dilanjutkan granulasi di dalam *granulator*. Bahan baku yang digunakan terbagi menjadi 2 jenis yaitu bahan baku cair dan bahan baku padat. Bahan baku cair terdiri dari dari amonia, asam sulfat, dan asam fosfat direaksikan di dalam reaktor *preneutralizer* (PN). Sedangkan bahan baku padat berupa KCl, urea, dan ZA, serta *filler* (jika dibutuhkan) ditambahkan ke dalam *granulator* melalui *drag conveyor*.

II.2 Uraian Tugas Khusus

Uraian tugas khusus meliputi Evaluasi Neraca Massa Reaktor Preneutralizer (09-R-103) di PT. Petrokimia Gresik Departemen IIA Unit NPK Phosnka I.

II.2.1 Latar Belakang

PT. Petrokimia Gresik adalah perusahaan yang memproduksi pupuk dan non pupuk. Salah satu departemen produksi di PT Petrokimia Gresik adalah Departemen Produksi II A. Departemen Produksi II A terdapat lima unit pabrik dan satu unit pabrik pengantongan serta unit perencanaan dan pengendalian produksi. Departemen Produksi II A mampu memproduksi Pupuk NPK Phonska I dengan kapasitas 450.000 ton/tahun, Pupuk NPK Phonska II/III dengan kapasitas 600.000 ton/tahun, dan Pupuk Fosfat I dengan kapasitas 500.000 ton/tahun. Proses produksi Pupuk NPK Phonska terdiri dari beberapa tahapan proses sebagai berikut:

- 1. Reaksi pencampuran bahan baku.
- 2. Granulasi, granulasi adalah proses pembentukan butiran-butiran granul Pupuk Phonska. Proses granulasi dibagi menjadi dua, yaitu proses aglomerasi dan *layering*.
- 3. Pengeringan, pengeringan dilakukaan sampai memperoleh kadar air 1 1,5%.
- 4. Pengayakan.
- 5. Pendinginan.
- 6. Pemberian Coating oil.
- 7. Pengantongan/pengemasan.

Salah satu alat utama yang digunakan dalam proses produksi Pupuk Phonska adalah *Preneutralizer tank* dan *Granulator drum. Preneutralizer tank* adalah tempat terjadinya reaksi pembentukan *slurry* dari reaksi Ammonia, Asam Sulfat, dan Asam Fosfat. Hasil pembentukan *slurry* dari *Preneutralizer tank* dipompakan kedalam *Granulator drum*, di dalam *Granulator drum* terjadi proses granulasi yaitu pembentukan butiran-butiran granul phonska.

Keluaran dari Preneutralizer tank berupa Ammonium Sulfat. Monoamonium Sulfat (MAP), dan sedikit Diamonium Fosfat (DAP), sedangkan Amonia yang tidak bereaksi akan berubah menjadi gas yang kemudian dikirim ke Scrubbing unit. Slurry yang terbentuk kemudian dipompakan dalam Granulator menggunakan pompa jenis sentrifugal. Penambahan Ammonia pada saat proses granulasi bertujuan agar terbentuk padatan Diammonium Fosfat oleh reaksi antara Ammonia dengan Monoamonium Fosfat. Mol rasio N/P dijaga dalam kisaran 1,6 - 1,8. Salah satu tahapan proses yang menentukan kuantitas produk yang dihasilkan adalah ukuran butiran aglomerasi granulasi.

II.2.2 Tujuan

Tujuan dilakukan pembuatan tugas khusus ini untuk menganalisis kinerja dari alat *Preneutralizer tank* melalui neraca massa pada unit produksi Pupuk Phonska I dalam sebuah perencanaan pabrik.

II.2.3 Manfaat

Perhitungan neraca massa *Preneutralizer tank* pada Departemen Produksi II A unit NPK Phonska memiliki manfaat yang dapat digunakan sebagai pembuatan dan perhitungan neraca energi, perhitungan rancangan produksi, serta evaluasi dan perbaikan kinerja (*performance*) pada *Preneutralizer tank*. Selain itu, diharapkan dapat mengetahui kualitas produk Pupuk Phonska di Pabrik Phonska I dari besarnya kadar senyawa N, P dan O dalam Pupuk Phonska dan dapat memberikan referensi atau acuan dalam melakukan perhitungan dan analisa jumlah hasil produk yang akan diperoleh serta jumlah bahan baku dan bahan penolong yang digunakan untuk mendapatkan hasil produk sesuai keinginan.

II.2.4 Tinjauan Pustaka

A. Neraca Massa

Neraca massa adalah perincian banyaknya bahan-bahan yang masuk, keluar, dan menumpuk dalam suatu alat proses. Perhitungan dan perincian banyaknya bahan-bahan ini diperlukan untuk pembuatan neraca energi, perhitungan rancangan, dan evaluasi kinerja suatu alat atau satuan proses. Selain itu, penggunaan neraca massa juga dapat digunakan untuk mengetahui variabel proses yang belum diketahui berdasarkan dari variable proses yang sudah diketahui dan ditentukan, dibutuhkannya persamaan untuk menghubungkan 2 variabel dan disajikan dalam bentuk *flowsheet* atau blok diagram. Contoh perhitungan rancangan diperlukan untuk mendapatkan hasil produk dalam jumlah tertentu dengan memperhatikan perhitungan jumlah bahan baku dan bahan penolong yang digunakan. Jumlah energi atau panas dan ukuran kapasitas peralatan ditentukan

dari jumlah bahan yang diproses.

B. Reaktor Preneutralizer Tank

Reaktor *preneutralizer tank* digunakan untuk tempat berlangsungnya reaksi netralisasi antara Ammonia (NH₃) dengan Asam Fosfat (H₃PO₄) yang menghasilkan *Monoammonium Phospate* (MAP) dan Ammonia dengan Asam Sulfat yang menghasilkan *Ammonium Sulfate* hingga mencapai perbandingan molar N/P = 0.65 - 0.9.j

Bahan baku masuk berupa NH₃ cair yang dimasukkan ke dalam tangki melalui bagian sisi bawah tangki dengan tujuan agar Ammonia tetap dalam kondisi stabil, mengurangi kemungkinan perubahan Ammonia menjadi gas. Sedangkan H₃PO₄ dimasukkan ke dalam tangki bagian atas serta H₂SO₄ yang dimasukkan ke dalam tangki melalui bagian sisi tangka. Dalam *Pre-Neutralizer*, akan terjadi reaksi yang menghasilkan *slurry* NH₄H₂PO₄ atau MAP (*Mono Ammonium Phosphate*) serta (NH₄)₂SO₄ atau *Ammonium Sulfate*, hasil dari reaksi dipompa menuju alat *granulator*. Kadar air pada *slurry* 8-17% (kadar air akan lebih rendah jika digunakan Asam Fosfat lebih pekat).

Didalam Pre-Neutralizer Tank akan terjadi reaksi netralisasi antara H₃PO₄ dan NH₃ yaitu:

1. Reaksi Pembentukan Ammonium Sulfat

$$H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$$

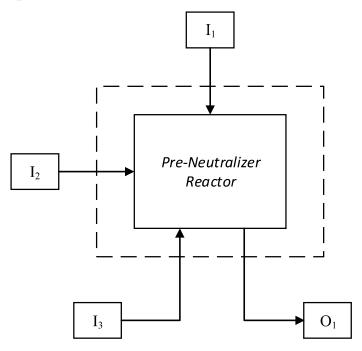
SA ZA

2. Reaksi Pembentukan Monoammonium Phospat (MAP)

$$H_3PO_4 + NH_3 \rightarrow NH_4H_2PO_4$$

PA MAP

Reaksi yang terjadi merupakan reaksi netralisasi dan bersifat eksotermis. Rasio mol antara NH₃ dan HPO, dinamakan rasio N/P. Produk keluaran Pre-Neutralizer Tank ini memiliki spesifikasi mol rasio N/P yaitu 0,65-0,9 dengan pH 2-3,5.



Low pressure steam dibutuhkan untuk mempercepat terjadinya reaksi dan agar reaksi berlangsung secara sempurna. Jika reaksi tidak berlangsung secara sempurna, gas Ammonia (NH₃) yang sifat volatile atau cepat menguap akan lolos dari reaksi ini dan menjadi emisi yang akan ditangkap oleh scruber dan dikembalikan oleh liquor. Dalam scrubber diinjeksikan Asam Fosfat untuk mentralkan Ammonia sisa reaksi supaya menjadi MAP yang kemudian dikembalikan lagi ke Pre-Neutralizer Tank. Untuk mencegah atau meminimalisir lolosnya gas Ammonia, diperlukan pengontrolan rasio N/P.

Suhu *slurry* dari *Pre-Neutralizer Tank* berkisar antara 95-120°C, sedangkan kadar air dalam *slurry* mencapai 8%-17%. Kadar yang lebih rendah dapat tercapai apabila adnya Asam Fosfat yang dimasukkan dengan konsentrasi tinggi. *Slurry* yang terbentuk dituangkan langsung di atas lapisan padatan di dalam *granulator* dengan menggunakan pompa 09-P-161. Keluaran *Pre- Neutralizer Tank* berbentuk *slurry* kemudian diumpankan ke dalam *granulator*.

C. Neraca Massa pada Reaktor Preneutralizer Tank

Pada perhitungan neraca massa dihitung massa yang masuk dan massa yang keluar selama operasi.

Gambar II.1 Model Skematik Neraca Massa pada Reaktor Preneutralizer

Tank

Laju Massa Input = Laju Massa Output $I_1I_2I_3$ = O_1 (2.1)

Dimana:

 I_1 = Laju massa asam fosfat $(H_3PO_4) + H_2O$

 I_2 = Laju massa asam sulfat $(H_2SO_4) + H_2O$

 I_3 = Laju massa ammonia (NH₃) + H₂O

O₁ = Laju massa *slurry* keluar dari Reaktor *Preneutralizer Tank*

II.2.5 Evaluasi Neraca Massa Preneutralizer Tank

Tabel II.1 Data Lapangan

Bahan Baku	Laju Massa (Kg/hari)
NH ₃	78228,51275
H ₂ SO ₄	76203,84315
H ₃ PO ₄	298719,0651
(NH ₄) ₂ SO ₄	90355,65189
KC1	155794,194

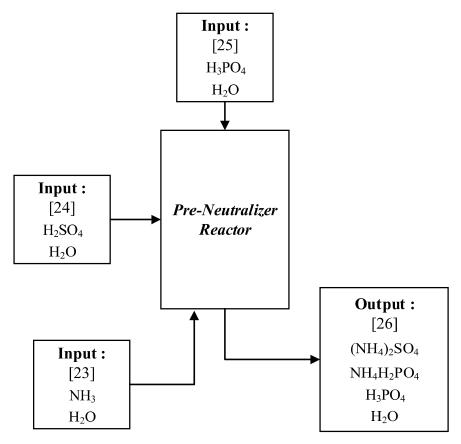
Pembagian Larutan NH₃:

• Masuk Reaktor *Preneutralizer* = 4494,5653 kg/hari

• Masuk *Granulator* = 33283,9475 kg/hari

Tahapan menyelesaikan permasalahan yang terjadi pada proses, dikumpulkan data yang diperlukan dengan mengumpulkan informasi bagian pengendalian dan studi literatur, studi dilakukan dengan mencari sumber literatur untuk melengkapi data yang diberikan dari lapangan.

Dari studi didapat data komposisi bahan baku input reaktor sebagai berikut:


- NH₃ (kemurnian 99,5%)
- H₂SO₄ (kemurnian 98%)
- H₃PO₄ (kemurnian 99%)

Tabel II.2 Berat Molekul Komponen

Komponen	BM
NH ₃	17
H ₂ SO ₄	98
H ₃ PO ₄	98
(NH ₄) ₂ SO ₄	132
NH ₄ H ₂ PO4	115
(NH ₄) ₂ HPO ₄	132
H ₂ O	17

Tabel II.3 Fraksi Komponen

Aliran	Komponen	Fraksi
INPUT	NH ₃	0,995
	H ₂ O	0,005
	H ₂ SO ₄	0,98
	H ₂ O	0,02
	H ₃ PO ₄	0,5
	H ₂ O	0,5
OUTPUT	(NH ₄) ₂ SO ₄	0,999
	H ₂ O	0,001

Gambar II.2 Neraca Massa Masuk Reaktor Pre-Neutralizer

Reaksi yang terjadi di dalam Reaktor Pre-Neutralizer

H₂SO₄ bereaksi lebih dahulu dengan NH₃ daripada H₃PO₄ dengan NH₃, hal ini disebabkan karena H₂SO₄ bersifat lebih reaktif dan juga menjadi *limiting reactant*, pada reaksi berikut:

Reaksi 1:	$2NH_3 +$	H_2SO_4	$(NH_4)_2SO_4$	
m	2630,5790	762,0384315	-	
r	1524,0769	762,0384	- 762,0384	+
S	1106,5021	0	762,0384	
Reaksi 2:	NH_3	+ H ₃ PO ₄	NH ₄ H ₂ PO ₄	
m	1106,5021	1524,0769	-	
r	1106,5021	1106,5021	1106,5021	+
S	0	417,5748	1106,5021	

Untuk H₃PO₄ yang tidak habis bereaksi akan disempurnakan dalam *granulator*.

Tabel II.4 Neraca Massa Reaktor Preneutralizer

INPUT		OUTPUT	
Stream 23		Stream 26	
NH ₃	44719,8424	H ₃ PO ₄	40922,3264
H ₂ O	<u>224,7228</u>	$(NH_4)_2SO_4$	100589,0730
	44944,5653	NH ₄ H ₂ PO ₄	127247,7419
Stream 24		H_2O	151108,3322
H ₂ SO4	74679,7663		419867,4735
H_2O	1524,0769		
762	203,84315		
Stream 25			
H ₃ PO ₄	149359,5326		
H ₂ O	<u>149359,5326</u>		
	298719,0651		
419	9867,4735		419867,4735

II.2.6 Konversi Reaksi

Konversi Reaksi merupakan tingkat keberhasilan suatu reaksi atau bagian dari umpan yang berubah menjadi suatu produk. Konversi reaksi sangat berhubungan dengan tingkat kesempurnaan reaksi. Konversi reaksi dinyatakan dalam persen (%). Konversi reaksi dapat dihitung dengan menggunakan rumus sebagai berikut:

$$Konversi~(\%) = \frac{Mol~reaktan~yang~bereaksi}{Mol~reaktan~yang~masuk} x~100\%$$

$$Konversi~(\%) = \frac{762,0384}{(762,0384+2630,5790)} x~100\% = 22,46\%$$

Dari hasil perhitungan konversi didapatkan hasil sebesar 22,46%, dimana hal ini menunjukkan bahwa 22,46% reaktan yang terbentuk menjadi produk yaitu H₃PO₄.

II.2.7 Pembahasan

Pre-neutralizer Tank merupakan tempat terjadinya reaksi bahan baku yang diunakan dalam pembuatan Pupuk Phonska. Reaksi yang terjadi di dalam Reaktor Pre-neutralizer merupakan reaksi netralisasi antara Ammonia (NH₃) dengan Asam Fosfat (H₃PO₄) yang menghasilkan *Monoammonium Phospate* (MAP) dan Ammonia dengan Asam Sulfat yang menghasilkan *Ammonium Sulfate* Didalam Reaktor Pre-neutralizer terdapat parameter operasi yang harus dijaga seperti *specific gravity* 1,45-1,55, suhu operasi 100-120°C, dan pH 2-3,5. Pada prinsipnya Pre-neutralizer Tank adalah reaktor yang membentuk (NH₄)₂SO₄ dan NH₄H₂PO₄. Sehingga *mass flow* bahan baku yang masuk sangat berpengaruh terhadap produk yang dihasilkan. Dalam hal ini juga, Ammonia sangat berpengaruh dalam kecepatan reaksi/laju alir yang dihasilkan, karena Ammonia digunakan sebagai penetralisir dalam reaksi.

Tugas khusus ini bertujuan untuk mengetahui perhitungan neraca massa pada Reaktor Preneutralizer, yaitu jumlah aliran yang masuk dan jumlah aliran

yang keluar. Dari perhitungan tersebut didapatkan hasil dari tiap aliran masuk dan keluar. Untuk aliran masuk NH₃ sebanyak 44719,8424 kg dan H₂O sebanyak 224,7228 kg, aliran masuk H₂SO₄ sebanyak 74679,7663 kg dan H₂O sebanyak 1524,0769 kg, aliran masuk H₃PO₄ sebanyak 149359,5326 kg dan H₂O sebanyak 149359,5326 kg, dengan total aliran masuk sebanyak 419867,4735 kg. Untuk aliran keluar H₃PO₄ sebanyak 40922,3264 kg, (NH₄)₂SO₄ sebanyak 100589,0730 kg, NH₄H₂PO₄ sebanyak 127247,7419 kg, dan H₂O sebanyak 151108,3322 kg, dengan total aliran keluar sebanyak 419867,4735 kg.