BAB II TINJAUAN PUSTAKA

2.1 Air Baku

Air baku merupakan salah satu bahan dasar dalam proses pengolahan air minum yang diambil dari sumber-sumber yang memenuhi standar baku mutu. Sumber air yang biasa dipakai sebagai air baku yang nantinya akan digunakan untuk keperluan minum adalah air hujan, air tanah, air permukaan dan air laut. Di antara sumber-sumber tersebut yang paling banyak digunakan adalah air tanah dan air permukaan, sedangkan air laut jarang digunakan karena membutuhkan teknologi tinggi dan biaya yang mahal untuk mengolahnya. Air baku yang akan digunakan untuk proses pengolahan harus diperhatikan pula klasifikasi kelas badan air yang akan digunakan. Karena klasifikasi kelas yang berbeda juga mempengaruhi proses pengolahannya.

2.1.1 Sumber Air Baku

Sumber air baku yang akan digunakan sebagai air minum adalah air permukaan (air sungai). Air permukaan merupakan air yang berada di permukaan, contohnya sungai, rawa, danau dan mata air. Sebagai sumber air baku untuk air minum, maka air permukaan harus memenuhi kualitas oksigen yang terlarut, pH yang sesuai, kandungan zat padat, kandungan bakteri, kahadiran zat beracun, temperatur dan parameter lainnya. Air permukaan yang banyak digunakan untuk sumber air baku pengolahan air minum adalah air sungai dan air danau (Astono, 2011)

2.1.2 Pemilihan Sumber Air Baku

Menurut Droste (1997), dalam memilih sumber air baku harus perhatikan halhal sebagai berikut:

- 1. Kualitas air baku.
- 2. Volume (kuantitas) air baku.
- 3. Kondisi iklim di daerah sumber air baku.

- 4. Lokasi sumber air baku harus tetap, tidak mengalami kemungkinan pindah atau tertutup.
- 5. Kontruksi intake yang memenuhi syarat dan kesulitan yang kecil.
- 6. Kemungkinan perluasan intake di masa yang akan datang.
- 7. Elevasi muka air sumber mencukupi.
- 8. Kemungkinan timbulnya pencemar di masa yang akan datang.
- 9. Fasilitas dan biaya operasi dan perawatan yang tersedia mencukupi.

Pendekatan yang paling efektif untuk menentukan apakah suatu sumber air memenuhi persyaratan sebagai sumber air baku air minum adalah memilih sumber dengan kualitas yang baik. Kualitas dari sumber air baku haruslah diperhatikan karena berpotensi mengandung berbagai macam polutan.

2.1.3 Persyaratan dalam Penyediaan Air Baku

Dalam penyediaan air baku, tentu terdapat beberapa persyaratan yang harus terpenuhi dalam air baku tersebut:

Persyaratan kualitas menggambarkan mutu dari air baku air bersih. Persyaratan tersebut adalah sebagai berikut (Agustina, 2007).

- a. Dalam persyaratan fisik, air bersih harus jernih, tidak berwarna, tidak berbau, tidak berasa, dan memiliki suhu sama dengan suhu udara atau kurang lebih ± 25 °C.
- b. Dalam persyaratan kimia, air bersih tidak boleh mengandung bahan-bahan kimia dalam jumlah yang melampaui batas. Beberapa persyaratan antara lain adalah pH, total solid, zat organik, CO₂ agresif, kesadahan, kalsium (Ca), besi (Fe), mangan (Mn), tembaga (Cu), seng (Zn), chlorida (Cl), nitrit, flourida (F), dan logam berat.
- c. Dalam persyaratan biologis, air bersih tidak boleh mengandung kuman patogen dan parasitik yang menganggu kesehatan. Persyaratan biologis ditandai dengan tidak adanya bakteri E. coli dalam air.

d. Dalam persyaratan radioaktif, ir bersih tidak boleh mengandung zat yang menghasilkan bahan-bahan radioaktif, misalnya sinar alfa, beta, dan gamma.

1. Persyaratan Kuantitas (Debit)

Persyaratan kuantitas dalam penyediaan air bersih adalah ditinjau dari banyaknya air baku yang tersedia. Artinya air baku tersebut dapat digunakan untuk memenuhi kebutuhan sesuai dengan kebutuhan daerah dan jumlah penduduk yang akan dilayani. Persyaratan kuantitas juga dapat ditinjau dari standar debit air bersih yang dialirkan ke konsumen sesuai dengan jumlah kebutuhan air bersih. Kebutuhan air bersih masyarakat bervariasi, tergantung pada letak geografis, kebudayaan, tingkat ekonomi, dan skala perkotaan tempat tinggalnya (Agustina, 2007).

2. Persyaratan Kontinuitas

Air baku untuk air bersih harus dapat diambil terus menerus dengan fluktuasi debit yang relatif tetap baik pada saat musim kemarau maupun musim hujan. Kontinuitas juga dapat diartikan bahwa air bersih harus tersedia 24 jam perhari atau setiap saat diperlukan, kebutuhan air tersedia. Akan tetapi, kondisi ideal tersebut hampir tidak dapat dipenuhi pada setiap wilayah di Indonesia sehingga untuk menentukan tingkat kontinuitas pemakaian air dapat dilakukan dengan cara pendekatan aktifitas konsumen terhadap prioritas pemakaian air. Prioritas pemakaian air yaitu minimal selama 12 jam perhari, yaitu pada jamjam aktivitas kehidupan sekitar pukul 06.00–18.00.

Sebagian besar konsumen memerlukan air untuk kehidupan dan pekerjaannya dalam jumlah yang tidak ditentukan. Oleh karena itu, diperlukan reservoar pelayanan dan fasilitas energi yang siap setiap saat. Sistem jaringan perpipaan didesain untuk membawa suatu kecepatan aliran tertentu. Kecepatan dalam pipa tidak boleh melebihi 0,6–1,2 m/s. Ukuran pipa harus tidak melebihi dimensi yang diperlukan dan tekanan dalam sistem harus tercukupi. Dengan analisis jaringan pipa distribusi, dapat ditentukan dimensi atau ukuran pipa yang

diperlukan sesuai dengan tekanan minimum yang diperbolehkan agar kuantitas aliran terpenuhi (Agustina, 2007).

2.1.4 Karakteristik Air Baku

Dalam air baku yang digunakan yaitu air permukaan (air sungai) mempunyai beberapa karakteristik sebagai berikut:

A. Kekeruhan

Kekeruhan air sungai disebabkan oleh banyaknya material yang tersuspensi di dalam air sungai, seperti tanah, lumpur dan bahan-bahan organik lainnya. Sedimen tersuspensi dari daratan dibawa oleh aliran permukaan saat hujan turun (Johnson & Moldenhauer, 1969).

B. Total Coliform

Total coliform adalah kelompok bakteri yang termasuk di dalamnya bakteri jenis aerobik dan fakultatif anaerobik, dimana merupakan bakteri gram negatif Sebagaian besar bakteri total coliform adalah heterotropic dan dapat bertambah jumlahnya di air dan tanah. Total coliform juga dapat bertahan dan bertambah banyak jumlahnya di sistem distribusi air, terutama jika kondisinya memungkinkan. Keberadaan total coliform dapat berasal dari tinja manusia atau hewan dan dapat pula berada secara alamiah di dalam air. Total coliform hanyalah sebagai indikator yang digunakan untuk mengindikasikan bahwa bisa saja terdapat mikroba lain dalam air tersebut, misalnya mikroba patogen seperti Giardia, Cryptosporidium, E.coli, dan lainlain (Lia dkk, 2019).

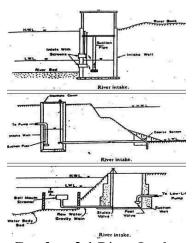
2.2 Standar Kualitas Air Minum

Standar kualitas air minum di Indonesia diatur pada Peraturan Menteri Kesehatan Republik Indonesia No.492/MENKES/PER/IV/2010 tentang Persyaratan Kualitas Air Minum. Dimana air yang tersalur harus memiliki mutu baik, bersih atau jernih dan dapat dinilai dari penglihatan bahwa air seharusnya bersih tanpa berbau,

berwarna dan keruh dan layak untuk didistribusikan kepada pelanggan. Kualitas mutu air minum dapat diklasifikasikan menjadi 4 (empat) kelas, yaitu:

- a. Kelas satu, air yang peruntukannya dapat digunakan untuk air baku air minum, dan atau peruntukan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.
- b. Kelas dua, air yang peruntukannya dapat digunakan untuk prasarana/sarana rekreasi air, pembudidayaan ikan air tawar, peternakan, air untuk mengairi pertanaman, dan atau peruntukan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.
- c. Kelas tiga, air yang peruntukannya dapat digunakan untuk pembudidayaan ikan air tawar, peternakan, air untuk mengairi pertanaman, dan atau peruntukan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.
- d. Kelas empat, air yang peruntukannya dapat digunakan untuk mengairi pertanaman dan atau peruntukan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.

2.3 Bangunan Pengolahan Air Minum


2.3.1 Intake dan Screen

Berdasarkan Peraturan Menteri Pekerjaan Umum Nomor 18/PRT/M/2007 tentang Penyelenggaraan Pengembangan Sistem Penyediaan Air Minum, *intake* adalah bangunan penangkap air atau tempat air masuk sungai, danau, situ, atau sumber air lainnya. Kapasitas bangunan *intake* yang digunakan harus disesuaikan dengan kebutuhan air harian maksimum. Persyaratan lokasi penempatan bangunan pengambilan (*intake*):

- 1. Penempatan bangunan penyadap (*intake*) harus aman terhadap polusi yang disebabkan pengaruh luar (pencemaran oleh manusia dan makhluk hidup lain);
- Penempatan bangunan pengambilan pada lokasi yang memudahkan dalam pelaksanaan dan aman terhadap daya dukung alam (terhadap longsor dan lainlain);
- 3. Konstruksi bangunan pengambilan harus aman terhadap banjir air sungai, terhadap gaya guling, gaya geser, rembesan, gempa dan gaya angkat air (*up-lift*);

- 4. Penempatan bangunan pengambilan diusahakan dapat menggunakan sistem gravitasi dalam pengoperasiannya;
- 5. Dimensi bangunan pengambilan harus mempertimbangkan kebutuhan maksimum harian;
- 6. Dimensi *inlet* dan *outlet* dan letaknya harus memperhitungkan fluktuasi ketinggian muka air;
- 7. Pemilihan lokasi bangunan pengambilan harus memperhatikan karakteristik sumber air baku;
- 8. Konstruksi bangunan pengambilan direncanakan dengan umur pakai (*lifetime*) minimal 25 tahun;
- Bahan/material konstruksi yang digunakan diusahakan menggunakan material lokal atau disesuaikan dengan kondisi daerah sekitar (Peraturan Menteri Pekerjaan Umum Nomor 18/PRT/M/2007).

Pada perancangan bangungan air minum kali ini, kami menggunakan *Indirect Intake* (Bangunan Penyadap Tidak Langsung) yaitu jenis *River Intake*. *Intake* jenis ini menggunakan pipa penyadap dalam bentuk sumur pengumpul. *Intake* ini juga lebih ekonomis untuk air sungai yang mempunyai perbedaan level muka air pada musim hujan dan musim kemarau yang cukup tinggi.

Gambar 2.1 River Intake

Selanjutnya pada bagian screen, kami menggunakan coarse screen. Screen sendiri bertujuan untuk menghilangkan sampah padat seperti kertas, plastik, atau kain yang dapat merusak dan menyumbat aliran air, pipa dan pompa. Pemilihan coarse

screen dirasa sangat tepat karena dapat menghilangkan benda–benda berukuran besar

dan mempunyai ukuran celah 6–150 mm mengingat berbagai ukuran sampah yang umumnya terdapat di sungai. Rumus-rumus yang dipergunakan dalam perhitungan intake dapat dilakukan dengan rumusan sebagai berikut:

1. Mencari debit tiap intake

$$Q = \frac{\text{Q kapasitas produksi}}{\text{\Sigma pipa}}$$

Keterangan:

Q = debit (m^3/s)

 Σ pipa = Jumlah Pipa Intake

2. Mencari Luas Penampang Pipa Inlet

$$A = \frac{\text{Q pipa intake}}{\text{V}}$$

Keterangan:

 $A = Luas Penampang (m^2)$

 $Q = debit (m^3/s)$

v = Kecepatan (m/s)

3. Mencari Luas Penampang Pipa Inlet

$$D = \left[\frac{4 \times A}{\pi}\right]^{0.5}$$

Keterangan:

D = Diameter Pipa (m)

 $A = Luas Penampang (m^2)$

4. Rumus umum kecepatan (v)

$$v = \frac{Q}{A}$$

Keterangan:

v = Kecepatan (m/s)

 $Q = debit (m^3/s)$

 $A = luas penampang (m^2)$

5. Head Losses Mayor sepanjang Pipa

$$D = \left[\frac{10.67 \, x \, Q^{1.85}}{C^{1.85} \, x \, D^{4.87}} \right] \, x \, L$$

Keterangan:

Hf = Headlosses Mayor (m)

 $Q = debit (m^3/s)$

L = Panjang Pipa (m)

C = Koefisien Kekasaran Pipa

D = Diameter Pipa (m)

Tabel 2.1 Koefisien Kekasaran Pipa Haen-Williams

Jenis Pipa	Nilai kekasaran pipa (C)
Extremely smooth and straight pipes	140
New Steel or Cast Iron	130
Wood; Concrete	120
New Riveted Steel; vitrified	110
Old Cast Iron	100
Very Old and Corroded Cast Iron	80

Sumber: Evett & Liu (1987)

6. Head Losses Minor (Hm)

$$Hm = \frac{K \times v^2}{2g}$$

Keterangan:

Hm= minor losses (m)

k = koefisien kehilangan energi

v = kecepatan (m/s)

g = pecepatan gravitasi (m^2/s)

Tabel 2.2 Nilai K untuk Kehilangan Energi

Valve, Fittings, and Specials	K value
Entrance, suction bell (32 in) 81cm	0,004
90° elbow (24 in) 61 cm	0,3
Gate valve (24 in) 61 cm	0,19
Reducer (14 in) 35,5 cm	0,25
Check valve (20 in) 51 cm	2,5
90 ^o elbow (20 in) 51 cm	0,3
Gate Valve (20 in) 51 cm	0,19
Tee (20 in x 20 in) 50 cm x 50 cm	1,8

Sumber: (Qasim (2000) Water Works Engineering Planning, Design, and Operation hal 203, 2000)

7. Mencari Slope Pipa

$$SWHL = \frac{Hf}{L}$$

Keterangan:

S = Slope Pipa (m/m)

L = Panjang Pipa (m)

Hf = Head Losses (m)

8. Jumlah Kisi pada Screen (n)

$$D = n \times d \times (n+1) \times r$$

Keterangan:

n = Jumlah Kisi

d = Lebar Batang Kisi (m)

r = Jarak Antar Kisi (m)

D = Lebar Screen (m)

9. Mencari Velocity Head (hv)

$$hv = \frac{vc^2}{2g}$$

Keterangan:

hv = velocity head (m)

v = kecepatan (m/s)

 $g = pecepatan gravitasi (m^2/s)$

10. Headloss melalui screen (Hfscreen)

$$Hfscreen = \beta x \left(\frac{W^{\frac{4}{3}}}{b}\right) x Hv \times \sin \propto$$

Keterangan:

 β = Koefisien minor losses (m)

w = lebar bar (cm)

b = jarak antar bar (cm)

Tabel 2.3 Faktor Minor Losses Bar

Bentuk Bar	Nilai minor losses (β)
Shape edge rectangular	2,42
Rectangular with semicircular up stream face circular	1,83
Circular	1,79
Rectangular with semicircular up stream and down stream face	1,67
Tear shape	0,76

Sumber: Qasim (2000) Water Works Engineering Planning, Design, and Operation

2.3.2 Bak Pengumpul

Bak pengumpul bertujuan untuk menampung air sementara dan padatan kasar yang mudah mengendap dan terdapat pada aliran air seperti pasir (Metcalf & Eddy,

2003). Selain bertujuan untuk menampung air, bak pengumpul juga berfungsi untuk mengontrol fluktuasi dari aliran air yang akan diolah agar memberikan kondisi aliran yang stabil pada proses pengolahan selanjutnya.

Cara kerja bak pengumpul ini adalah ketika air yang keluar dari proses produksi, maka selanjutnya air dialirkan menuju bak pengumpul. Pada bak pengumpul debit air diatur agar dapat memenuhi kriteria perencanaan pada unit bangunan selanjutnya. Rumus yang digunakan pada unit ini adalah sebagai berikut:

Volume Bak Penampung

$$V = Q x td$$

dengan:

V = Volume bak penampung (m³)

 $Q = Debit air (m^3/s)$

td = Waktu detensi (s)

Ketinggian total bak penampung

$$Htotal = H + (10-30\% x H)$$

dengan:

HTotal = Kedalaman total bak penampung (m)

H = Kedalaman bak penampung (m)

Fb = 10% - 30% H

2.3.3 Prasedimentasi

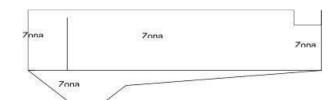
Prasedimentasi biasa digunakan untuk menghilangkan partikel padat seperti kerikil dan pasir yang berasal dari air sungai sebelum dipompa ke unit pengolahan. Prasedimentasi merupakan salah satu unit pada bangunan pengolahan air minum yang umumnya digunakan sebagai pengolahan pendahuluan. Bentuk unit prasedimentasi yang umum digunakan adalah *rectangular* dan *circular* serta terdiri dari empat zona, yaitu zona inlet, zona pengendapan, outlet, dan zona lumpur. Faktor-faktor yang mempengaruhi proses pengendapan adalah overflow rate, vhorizontal (vh), bilangan Reynold partikel, serta karakteristik aliran (Reynolds &

Richards, 1996). Bak pengendap pertama terdiri dari empat ruangan fungsional yaitu:

1. Zona Inlet

Tempat memperhalus aliran transisi dari aliran influen ke aliran *steady uniform* di zona settling (aliran laminer).

2. Zona Pengendapan


Tempat berlangsungnya proses pengendapan/pemisahan partikel-partikel diskrit di dalam air.

3. Zona Lumpur

Tempat menampung material yang diendapkan bersama lumpur endapan.

4. Zona Outlet

Tempat memperhalus aliran transisi dari zona settling ke aliran efluen serta mengatur debit efluen (Qasim et al., 2000).

Gambar 2.2 Tampak Samping Unit Prasedimentasi

Menurut Metcalf & Eddy (2003) terdapat beberapa kriteria yang perlu diperhatikan untuk mendesain unit prasedimentasi, antara lain: *detention time*, *overflow rate*, *average flow*, *peak hourly flow*, dan *weir loading*. Kriteria desain unit prasedimentasi dapat dilihat pada **Tabel 2.3**.

Gambar 2.3 Desain Tipikal Prasedimentasi

Detention time	h	1,5-2,5	2	h	1,5-2,5	2
Overflow rate						
Average flow	gal/ft ² .d	800-1200	1000	$m^3/m^2.d$	30-50	40
Peak hourly flow	gal/ft ² .d	2000-3000	2500	$m^3/m^2.d$	80-120	100
Weir loading	gal/ft.d	10.000-40.000	20.000	$m^3/m^2.d$	125-500	250
Primary settling with waste activated-sludge return						
Detention time	h	1,5-2,5	2	h	1,5-2,5	2
Overflow rate						
Average flow	gal/ft ² .d	600-800	700	$m^3/m^2.d$	24-32	28
Peak hourly flow	gal/ft ² .d	1200-1700	1500	$m^3/m^2.d$	48-70	60
Weir loading	gal/ft.d	10.000-40.000	20,000	m^3/m^2 .d	125-500	250

(Sumber: Metcalf & Eddy (2003 hal 398))

Rumus-rumus yang biasanya dipergunakan dalam perhitungan prasedimentasi yaitu:

1. Settling zone

a. Kecepatan Pengendapan

$$t = vs = \frac{g}{18} x \frac{(Ss-1) d^2}{v}$$

dimana:

g = percepatan gravitasi (m/d^2)

Ss = berat jenis partikel

d = diameter partikel (m)

v = viskositas kinematis (m²/dt)

b. Kecepatan aliran (vh)

$$vs = \frac{1}{td}$$

dimana:

1 = panjang(m)

td = waktu detensi (td)

c. Reynold number (Nre)

$$Nre = \frac{vh \times R}{\mu}$$

dimana:

vh = kecepatan aliran (m/det)

R = jari-jari hidrolis (m)

 μ = absolute viskositas (m/s)

d. Froude number (Nfr)

$$Nfr = \frac{Vh^2}{g \times R}$$

dimana:

vh = kecepatan aliran (m/det)

R = jari-jari hidrolis (m)

g = percepatan gravitasi (m/s²)

e. Kecepatan scoring (Vsc)

$$Vsc = \sqrt{\frac{8 x \beta x g x (\rho s - \rho w) x NFr}{a x \rho w}}$$

dimana:

Vsc = kecepatan scoring (m/det)

 ρ sludge = 2650 kg/m³

 $ρw air = 997 kg/m^3 (Reynold, 1996)$

Kontrol pengerusan (scouring) $\beta = 0.02-0.12$; $\alpha = 0.03$

2. Inlet zone

a. Luas Permukaan pintu air

$$A = \frac{Q}{V}$$

dimana:

 $Q = debit (m^3/s)$

V = kecepatan aliran (m/s)

b. Headloss di Saluran Pengumpul

$$v = \frac{1}{\text{gn}} \left(\frac{wxh}{w + 2h} \right)^{\frac{2}{3}} \left(\frac{Hf}{l} \right)^{\frac{2}{3}}$$

PERANCANGAN BANGUNAN INSTALASI PENGOLAHAN AIR MINUM

(SUMBER AIR BAKU:SUNGAI PROGU HULU,TEMANGGUNG)

dimana:

= lebar saluran pengumpul

= panjang saluran pengumpul

= koef manning n

c. Headloss Pintu air

$$Hf = \frac{Q}{2.746 \times H^{\frac{2}{3}} \times Lp}$$

dimana:

= debit (m $^3/s$) Q

h = tinggi saluran pengumpul

Lp = lebar saluran pengumpul

3. Outlet zone

Apabila menggunakan saluran pelimpah:

a. Tinggi Peluapan melalui V Notch (H)

$$Q = \frac{8}{15} (Cd) \sqrt{2g} \tan \frac{\theta}{2} H^{\frac{5}{2}}$$

dimana:

 $Q = \text{kapasitas tiap bak } (\text{m}^3/\text{det})$

Cd= koefisien drag

= panjang weir keseluruhan (m)

= percepatan gravitasi (m/det²)

= tinggi air diatas saluran pelimpah (m)

b. Saluran pengumpul

$$Q = 1.84 \times B \times h^{3/2}$$

dimana:

 $Q = \text{kapasitas tiap bak } (\text{m}^3/\text{det})$

B = lebar pelimpah/gutter (m)

H = kedalaman gutter (m)

4. Sludge zone

Ruang lumpur berbentuk limas terpancung:

$$V = 1/3 x t x (A1 + A2 + (A1 x A)1/2)$$

dimana:

V = volume ruang lumpur (m³)

t = tinggi ruang lumpur (m)

A1 = luas atas (m^2)

A2 = luas bawah (m^2)

2.3.4 Koagulasi

Koagulasi bertujuan untuk menyatukan partikel koloid sehingga membentuk partikel ukuran lebih besar yang selanjutnya dapat dipisahkan dengan cara yang lebih efisien melalui sedimentasi, atau penyaringan dengan menambahkan bahan koagulan (Dalimunthe, 2007 masdsen).

Koagulan atau flokulan dibubuhkan ke dalam air yang dikoagulasi yang bertujuan untuk memperbaiki pembentukan flok dan untuk mencapai sifat spesifik flok yang diinginkan. Koagulan adalah zat kimia yang menyebabkan destabilisasi muatan negatif partikel di dalam suspensi. Zat ini merupakan donor muatan positif yang digunakan untuk men-destabilisasi muatan negatif partikel (Pulungan, 2012). Pada tabel 2.5 dapat dilihat koagulan yang umum digunakan pada pengolahan air.

Gambar 2.4 Jenis-Jenis Kogulan

	Nama	Formula	Bentuk	Reaksi dengan Air	pH Optimum
		$Al_2(SO_4)_3. X$	D 11-		
A	luminium	$H_2O x =$	Bongkah, bubuk	Asam	6,0-7,8
	sulfat 14,16,18	14,16,18	DUDUK	Asam	

Program Studi S-1 Teknik Lingkunga

Nama	Formula	Bentuk	Reaksi dengan Air	pH Optimum
Sodium aluminate	Na ₂ Al ₂ O ₄	Bubuk	Basa	6,0 – 7,8
Polyaluminium Chloride, PAC	Aln(OH)mCl ₃ n-m	Cairan, bubuk	Asam	6,0 – 7,8
Ferric sulfate	ric sulfate		Asam	4 – 9
Ferri klorida FeCl ₃ .6H ₂ O		Bongkah, cairan	Asam	4 – 9
Ferro Sulfat	FeSO ₄ .7H ₂ O	Kristal halus	Asam	> 8,5

Sumber: Sugiarto (2006)

Penambahan dosis koagulan yang lebih tinggi tidak selalu menghasilkan kekeruhan yang lebih rendah. Dosis koagulan yang dibutuhkan untuk pengolahan air tidak dapat diperkirakan berdasarkan kekeruhan, tetapi harus ditentukan melalui percobaan pengolahan. Tidak setiap kekeruhan yang tinggi membutuhkan dosis koagulan yang tinggi. Jika kekeruhan dalam air lebih dominan disebabkan oleh lumpur halus atau lumpur kasar maka kebutuhan akan koagulan hanya sedikit, sedangkan kekeruhan air yang dominan disebabkan oleh koloid akan membutuhkan koagulan yang banyak. Terdapat beberapa faktor yang dapat mempengaruhi koagulan yaitu:

1. Pengaruh pH

Pada koagulan terdapat range pH optimum. Luasnya range pH koagulan ini dipengaruhi oleh jenis-jenis konsentrasi koagulan yang dipakai. Hal ini penting untuk menghindari adanya kelarutan koagulan. Proses koagulan pH yang terbaik adalah 6-9.

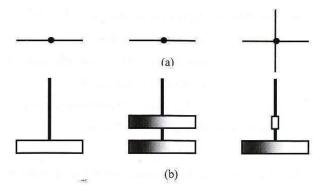
2. Pengaruh Temperatur

Pada temperatur yang rendah reaksi lebih lambat dan viskositas air menjadi lebih besar sehingga flok lebih sukar mengendap.

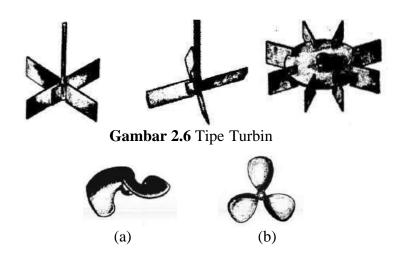
3. Dosis Koagulan

4. Air dengan kekeruhan yang tinggi memerlukan dosis koagulan yang lebih banyak. Dosis koagulan persatuan unit kekeruhan rendah, akan lebih kecil dibandingkan dengan air yang mempunyai kekeruhan yang tinggi, kemungkinan terjadinya tumbukan antara partikel akan berkurang dan netralisasi muatan tidak sempurna, sehingga mikroflok yang terbentuk hanya sedikit, akibatnya kekeruhan akan naik. Dosis koagulan yang berlebihan akan menimbulkan efek samping pada partikel sehingga kekeruhan akan meningkat.

5. Pengadukan (mixing)


Pengadukan diperlukan agar tumbukan antara partikel untuk netralisasi menjadi sempurna. Distribusi dalam air cukup baik dan merata, serta masukan energi yang cukup untuk tumbukan antara partikel yang telah netral sehingga terbentuk mikroflok. Pada proses koagulasi ini pengadukan dilakukan dengan cepat. Air yang memiliki kekeruhan rendah memerlukan pengadukan yang lebih banyak dibandingkan dengan air yang mempunyai kekeruhan tinggi.

6. Pengaruh Garam


Garam dapat mempengaruhi proses penggumpalan. Pengaruh yang diberikan akan berbeda bergantung dengan macam garam (ion) dan konsentrasinya. Semakin besar valensi ion, semakin besar pengaruhnya terhadap koagulan. Penggumpalan dengan garam Fe dan Al akan banyak dipengaruhi oleh anion dibanding dengan kation. Jadi natrium, kalsium, dan magnesium relatif tidak mempengaruhi (Sutrisno, 1992).

Koagulasi atau pengadukan cepat dapat dilakukan dengan tiga cara yaitu: pengadukan mekanis, hidrolis, dan pneumatik. Pada pengadukan mekanis, digunakan peralatan berupa motor bertenaga listrik, poros pengaduk (*shaft*), dan alat pengaduk (*impeller*). Berdasarkan bentuknya terdapat tiga macam alat pengaduk, yaitu *paddle* (pedal), *turbine*, dan *propeller* (baling- baling). Bentuk ketiga impeller dapat dilihat pada gambar 2.5 gambar 2.6, dan gambar 2.7. Kriteria *impeller* dapat dilihat pada tabel 2.4. Faktor penting dalam perancangan alat pengaduk mekanis adalah dua parameter pengadukan yaitu G dan td. Tabel 2.5 dapat dijadikan patokan untuk menentukan G dan td. Sedangkan untuk menghitung besarnya tenaga (*power*)

yang dibutuhkan, perlu memperhatikan jenis *impeller* yang digunakan dan nilai konstanta KL dan KT yang dapat dilihat pada tabel 2.6.

Gambar 2.5 Tipe Paddle (a) Tampak Atas (b) Tampak Samping

Gambar 2.7 Tipe Propeller (a) 2 blade (B) 3 blade

Tabel 2.4 Kriteria Impeller

Tipe Impeller	Kecepatan Putaran	Dimensi	Ket
Paddle	20-150 rpm	diameter: 50-80% lebar	
		bak	
		lebar: 1/6 – 1/10	
		diameter paddle	
Turbine	10-150 rpm	diameter: 30-50% lebar	
		bak	

Tipe Impeller	Kecepatan Putaran	Dimensi	Ket
Propeller	400-1750	diameter: maks. 45	Jumlah
	rpm	cm	pitch
			1-2 buah

(Sumber: Reynolds & Richards, 1996:185)

Tabel 2.5 Nilai Waktu Pengadukan Mekanis dan Gradien Kecepatan

Waktu Pengadukan, td	Gradien Kecepatan
(detik)	(detik ⁻¹)
20	1000
30	900
40	790
50 ≥	700

sumber: Reynolds & Richards (1996:184)

Tabel 2.6 Konstanta KL dan KT untuk Tangki Berserat

Jenis Impeller	KL	KT
Propeller, pitch of 1, 3 blades	41,0	0,32
Propeller, pitch of 2, 3 blades	43,5	1,00
Turbine, 4 flat blades, vaned disc	60,0	5,31
Turbine, 6 flat blades, vaned disc	65,0	5,75
Turbine, 6 curved blades	70,0	4,80
Fan turbine, 6 blades at 45°	70,0	1,65
Shrouded turbine, 6 curved blades	97,5	1,08
Shrouded turbine, with stator, no baffles	172,5	1,12

Jenis Impeller	KL	KT
Flat paddles, 2 blades (single paddles), Di/Wi=4	43,0	2,25
Flat paddles, 2 blades, Di/Wi=6	36,5	1,70
Flat paddles, 2 blades, Di/Wi=8	33,0	1,15
Flat paddles, 4 blades, Di/Wi=6	49,0	2,75
Flat paddles, 6 blades, Di/Wi=8	71,0	3,82

Sumber: Reynolds & Richards (1996:188)

Adapun faktor-faktor yang mempengaruhi proses koagulasi beserta rumus perhitungannya:

1. Gradien kecepatan (G)

Merupakan perbedaan kecepatan antara dua titik atau volume terkecil fluida yang tegak lurus perpindahan. Gradien kecepatan berhubungan dengan waktu pengadukan. Nilai G yang terlalu besar dapat mengganggu titik akhir pembentukan flok.

$$G = \left(\frac{P}{\mu \times C}\right)^{\frac{1}{2}}$$

dimana:

G = gradien kecepatan (det-1)

P = power pengaduk

μ = viskositas absolut

 $C = \text{volume bak } (m^3)$

$$G = \left[\frac{hf \times y}{\mu \times T}\right]^{\frac{1}{2}}$$

dimana:

y = densitas air

hf = kehilangan tekanan

T = waktu detensi (td)

2. Waktu kontak (td)

Waktu kontak adalah nilai kontak antara partikel kimia dengan air baku yang

dipengaruhi oleh volume bak dan debit air baku.

$$td = \frac{volume}{\text{debit}} = \frac{V}{Q}$$

3. Putaran rotasi pengaduk (n)

$$n^3 = \frac{P \times gc}{Dt^5 \times y \times Kt}$$

dimana:

n = putaran rotasi pengaduk (rps)

P = power pengaduk

gc = kecepatan gravitasi

Dt = diameter pengaduk

 γ = densitas air

Kt = konstanta pengaduk untuk turbulensi

4. Bilangan Reynolds

Bilangan Reynolds adalah bilangan untuk menentukan apakah aliran itu laminer, turbulen atau transisi

$$Nre = \frac{Dt^2 \, x \, n \, x \, \gamma}{\mu}$$

dimana:

Nre = bilangan Reynolds

n = putaran rotasi pengaduk (rps)

Dt = diameter pengaduk

 γ = densitas air

μ = viskositas absolut

2.3.5 Flokulasi

Flokulasi adalah proses penggabungan inti flok sehingga menjadi flok yang berukuran lebih besar. Pada flokulasi, kontak antar partikel melalui tiga mekanisme,

yaitu:

- 1. *Thermal motion*, yang dikenal dengan Brownian Motion atau difusi atau disebut sebagai *Flocculation Perikinetic*.
- 2. Gerakan cairan oleh pengadukan.
- 3. Kontak selama pengendapan. (Marsono, 2002)

Pengadukan lambat (agitasi dan *stirring*) digunakan dalam proses flokulasi, untuk memberi kesempatan kepada partikel flok yang sudah terkoagulasi untuk bergabung membentuk flok yang ukurannya semakin membesar. Selain itu, untuk memudahkan flokulan untuk mengikat flok-flok kecil dan mencegah pecahnya flok yang sudah terbentuk.

Pengadukan lambat dilakukan dengan gradien kecepatan kecil (20 sampai 100 detik⁻¹) selama 10 hingga 60 menit atau nilai GTd (bilangan Camp) berkisar 48000 hingga 210000. Gradien kecepatan diturunkan secara bertahap agar flok yang telah terbentuk tidak pecah dan berkesempatan bergabung dengan yang lain membentuk gumpalan yang lebih besar. Nilai G dan waktu detensi untuk proses flokulasi adalah:

- 1. Air sungai
 - Waktu detensi = minimum 20 menit
 - $G = 10-50 \text{ detik}^{-1}$
- 2. Air waduk
 - Waktu detensi = 30 menit
 - $G = 10-75 \text{ detik}^{-1}$
- 3. Air keruh
 - · Waktu detensi dan G lebih rendah
- 4. Jika menggunakan garam besi sebagai koagulan
 - G tidak lebih dari 50 detik⁻¹
- 5. Flokulator terdiri dari 3 kompartemen
 - G kompartemen 1: nilai terbesar
 - G kompartemen 2: 40% dari G kompartemen 1
 - G kompartemen 3: nilai terkecil
- 6. Penurunan kesadahan
 - Waktu detensi = 30 menit

- $G = 10-50 \text{ detik}^{-1}$
- 7. Presipitasi kimia (penurunan fosfat, logam berat, dan lain-lain)
 - Waktu detensi = 15-30 menit
 - $G = 20-75 \text{ detik}^{-1}$
 - $GT_d = 10.000-100.000$ (Masduqi & Assomadi, 2012:110)

Faktor-faktor yang berpengaruh serta rumus perhitungan pada flokulator, diantaranya yaitu:

1. Gradien kecepatan (G)

$$G = \left(\frac{P}{\mu \times V}\right)^{\frac{1}{2}}$$

• Baffle channel dan sistem orifice

$$G^3 = \frac{g x h}{v x td}$$

dimana:

v = viskositas kinematis

t = waktu detensi

g = percepatan gravitasi

h = headloss

• Pengaduk mekanis dengan paddle

$$G = \left[\frac{Cd \times A \times v^3}{2v \times V} \right]^{\frac{1}{2}}$$

dimana:

Cd = koefisien drag (tergantung bentuk paddle dan arah aliran)

A = luas permukaan paddle

v = viskositas kinematis

v = kecepatan relatif paddle

V = Volume bak flokulasi

2. Headloss saluran (Hf)

$$Hf \ akibat \ belokan = k \ x \frac{(vb)^2}{2g}$$

dimana:

k = konstanta empiris untuk belokan (1,5)

vb = kecepatan aliran (m/dt)

 $g = percepatan gravitasi (m/dt^2)$

3. Jumlah sekat/baffle (n) untuk around the end

$$n = \left\{ \left[\frac{2 x \mu x t}{\rho x (1.44 + f)} \right] x \left[\frac{H x L x G}{Q} \right]^2 \right\}^{\frac{1}{3}}$$

dimana:

n = jumlah sekat

H = kedalaman air (m)

L = panjang bak (m)

G = gradien kecepatan (dt-1)

 $Q = debit (m^3/dt)$

t = waktu fluktuasi (dt)

 μ = viskositas dinamis (kg/m.det)

 ρ = densitas air (kg/m³)

f = koefisien friksi dari sekat

w = lebar bak (m)

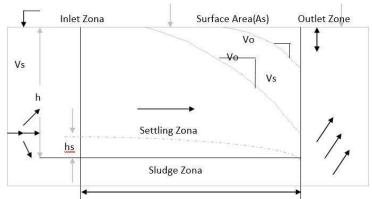
2.3.6 Sedimentasi

Sedimentasi adalah pemisahan padatan dan cairan dengan menggunakan pengendapan secara gravitasi untuk memisahkan partikel tersuspensi yang terdapat dalam cairan tersebut. Proses ini sangat umum digunakan pada instalasi pengolahan air minum. Aplikasi utama dari sedimentasi pada instalasi pengolahan air minum adalah:

- a. Pengendapan awal dari air permukaan sebelum pengolahan oleh unit saringan pasir cepat.
- b. Pengendapan air yang telah melalui proses prasedimentasi sebelum memasuki

unit saringan cepat.

- c. Pengendapan air yang telah melalui proses penyemprotan desinfektan pada instalasi yang menggunakan pipa dosing oleh alum, soda, Nacl, dan *chlorine*.
- d. Pengendapan air pada instalasi pemisahan besi dan mangan.


Pengendapan yang terjadi pada bak sedimentasi dibagi menjadi empat kelas. Pembagian ini didasarkan pada konsentrasi dari partikel dan kemampuan dari partikel tersebut untuk berinteraksi. Keempat kelas itu adalah:

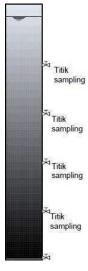
- a. Pengendapan Tipe I (Free Settling).
- b. Pengendapan Tipe II (Flocculent Settling).
- c. Pengendapan Tipe III (Zone/Hindered Settling).
- d. Pengendapan Tipe IV (Compression Settling).

Pada setiap bangunan sedimentasi terdapat empat zona:

- 1. Zona Inlet.
- 2. Zona Outlet.
- 3. Zona Settling.
- 4. Zona Sludge.

Adapun zona-zona tersebut dapat digambarkan seperti di bawah ini:

Tabel 2.7 Zona Pada Bak Sedimentasi

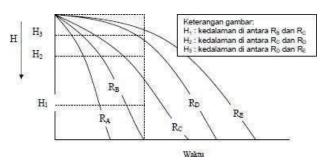

Dimana pada setiap zona terjadi proses-proses sebagai berikut :

- Zona Inlet = Terjadi distribusi aliran yang menuju zona settling (± 25% panjang bak)
- Zona Settling = Terjadi proses pengendapan yang sesungguhnya
- Zona Sludge = Sebagai ruang lumpur, dimana konfigurasi dan kedalamannya


tergantung pada metode pengurasan dan jumlah endapan lumpur. Untuk partikel 75% mengendap pada 1/5 volume bak.

 Zona Outlet = Pada zona ini dihasilkan air yang jernih tanpa suspensi yang ikut terbawa.

Kecepatan pengendapan partikel tidak bisa ditentukan dengan persamaan *Stoke's* karena ukuran dan kecepatan pengendapan tidak tetap. Besarnya partikel yang mengendap di uji dengan *column setting test* dengan *multiple withdraw ports*. Dengan menggunakan kolom pengendapan tersebut, sampling dilakukan pada setiap *port* pada interval waktu tertentu, dan data *removal* partikel diplot pada grafik.



Tabel 2.8 Kolom Test Sedimentasi Tipe II

Tabel 2.9 Grafik Isoremoval

Grafik *isoremoval* dapat digunakan untuk mencari besarnya penyisihan total pada waktu tertentu. Titik garis vertikal dari waktu yang ditentukan tersebut. Dapat menentukan kedalaman H₁, H₂, H₃.

Tabel 2.10 Penentuan Kedalaman H dan Seterusnya

Besarnya penyisihan total pada waktu tertentu dapat dihitung dengan menggunakan persamaan:

$$R_T = R_B + \frac{H_1}{H}(R_C - R_B) + \frac{H_2}{H}(R_D - R_C) + \frac{H_3}{H}(R_E - R_D)$$

Grafik *isoremoval* juga dapat digunakan untuk menentukan lamanya waktu pengendapan dan *surface loading* atau *overflow rate* bila diinginkan efisiensi pengendapan tertentu. Langkah yang dilakukan adalah :

- 1. Menghitung penyisihan total pada waktu tertentu, minimal sebanyak tiga variasi waktu. (mengulangi langkah di atas minimal dua kali)
- 2. Membuat grafik hubungan persen penyisihan total (sebagai sumbu y) dengan waktu pengendapan (sebagai sumbu x)
- 3. Membuat grafik hubungan persen penyisihan total (sebagai sumbu y) dengan *overflow rate* (sebagai sumbu x)

Kedua grafik ini digunakan untuk menentukan waktu pengendapan atau waktu detensi (td) dan *overflow rate* (Vo) yang menghasilkan efisiensi pengendapan tertentu. Hasil yang diperoleh dari kedua grafik ini adalah nilai berdasarkan eksperimen di laboratorium (secara *batch*). Nilai ini dapat digunakan dalam mendesain bak pengendap (aliran kontinu) setelah dilakukan penyesuaian, yaitu dikalikan dengan faktor *scale up*. Untuk waktu detensi, faktor *scale up* yang digunakan pada umumnya adalah 1,75 dan untuk overflow rate, faktor *scale up* yang digunakan pada umumnya adalah 0,65. (*Reynold dan Richards*,1996). Ada dua jenis bak sedimentasi yang biasa digunakan:

a Horizontal - flow Sedimentation

Desain yang baik pada bangunan ini dapat mengurangi lebih dari 95% dari

kekeruhan air. Bentuknya yang persegi Panjang yang tanpa menggunakan alat pengambil lumpur mekanik mempunyai beberapa keuntungan misalnya, mempunyai kemampuan untuk menyesuaikan kondisi air seperti perubahankekeruhan, laju aliran yang meningkat ataupun debit air yang meningkat secaratiba-tiba. Sedangkan pada bentuk yang circular biasanya menggunakan pengambil lumpur mekanik.

Cara kerja bak sedimentasi bentuk rectangular (persegi panjang) yaitu, air yang mengandung flok masuk ke zona inlet kemudian masuk ke zona settling melalui baffle/sekat agar alirannya menjadi laminer. Di zona settling partikel mengendap, endapannya masuk ke zona lumpur, sedangkan supernatant (airnya) keluar melalui zona outlet. Beberapa keuntungan *horizontal-flow* dibandingkan dengan up flow adalah Lebih bisa menyesuaikan dengan variasi kualitas dan hidrolik air:

- Prosesnya memberikan bentuk yang dapat direncanakan sesuai dengan operasional dan kondisi iklim.
- · Biaya konstruksi murah.
- Operasional dan perawatannya mudah.

Adapun kriteria desainnya jumlah air yang akan diolah (Q), waktu detensi, luas permukaan dan kecepatan pengendapan.

b. *Upflow Sedimentation*

Bangunan tipe ini biasanya digunakan bila debit air konstan dan kualitas kekeruhan tidak lebih dari 900 NTU. Kelemahan dari bangunan ini adalah tidakbisa digunakan bila kapasitasnya berlebih dan memerlukan tenaga ahli untuk mengoperasikannya. Bila dalam suatu bangunan pengolahan air lahannya terbatas bisa digunakan tipe ini untuk bak sedimentasinya karena lahan yang diperlukan untuk bangunan ini relatif kecil.

Semakin besar angka BOD menunjukkan bahwa derajat pengotoran air semakin besar (Sugiharto, 2008). Pengotoran air mengandung bahan-bahan organik, merusak kehidupan air serta menimbulkan bau. Salah satu cara untuk menurunkan polutan yaitu dengan teknologi pengolahan yang dapat dilakukan

dengan cara penambahan bahan kimia untuk menetralkan keadaan dan meningkatkan pengurangan dari partikel kecil yang tercampur dilanjutkan dengan proses pengendapan untuk mengurangi bahan organik, proses ini dikenal dengan proses koagulasi yang bertujuan untuk memisahkan koloid yang sangat halus di dalam air, menjadi gumpalan-gumpalan yang dapat diendapkan, disaring atau diapungkan.

Dengan berkurangnya bahan organik terlarut akan menyebabkan berkurangnya oksigen terlarut yang dibutuhkan untuk mengoksidasi bahan organik tersebut sehingga nilai BOD akan menurun. Menurut Metcalf & Eddy (2003), adanya waktu tinggal, penambahan bahan kimia, serta pengadukan sebelum unit sedimentasi dapat meningkatkan efisiensi penyisihan BOD sekitar 50-80%.

Efisiensi pengendapan partikel flokulan dipengaruhi oleh *over flow rate*, *detention time* dan kedalaman bak pengendap. Pengaruh dari faktor- faktor tersebut adalah sebagai berikut:

a. Detention time (t)

Membuat bak rectangular, aliran air memiliki kecepatan horisontal (Vo), sedangkan pengendapan partikel memiliki kecepatan pengendapan (Vs). Waktu detensi air secara teoritis adalah:

$$t = \frac{1}{vo}$$

dimana:

l = panjang bak

Waktu detensi secara teoritis untuk pengendapan flok adalah:

$$ts = \frac{h}{vs}$$

dimana:

h = kedalaman bak

Sedangkan untuk removal partikel t = ts, maka waktu detensi dapat ditentukan oleh faktor lebar dan kedalaman bak.

b. Over Flow Rate

So =
$$\frac{Q}{A}$$

dimana:

So = Over flow rate (m/jam)

 $Q = Debit (m^3/jam)$

As = $Surface area (m^2)$

Over flow rate ditentukan oleh surface area dimana semakin besar surface area, maka kecepatan pengendapan akan semakin cepat dan efisiensi bak semakin baik. Apabila $Vo = Vs = \frac{h}{ts}$ maka semakin besar h akan menurunkan efisiensi. Sebaliknya semakin besar waktu detensi akan meningkatkan efisensi sedimentasi.

1. Batch settling test

Batch settling test digunakan untuk mengevaluasi karakteristik pengendapan suspensi flokulen. Diameter coloumn untuk tes 5-8 inch (12,7 – 20,3 cm) dengan tinggi paling tidak sama dengan kedalaman bak pengendap. Sampel dikeluarkan melalui pori pada interval waktu periodik. Prosentase penghilangan dihitung untuk masing-masing sampel yang diketahui konsentrasi suspended solidnya dan konsentrasi sampel. Prosentase penghilangan diplotkan pada grafik sebagai nilai penghilangan pada grafik waktu vs kedalaman. Lalu dibuat interpolasi antara titiktitik yang diplot dan kurva penghilangan, Ra, Rb, dst.

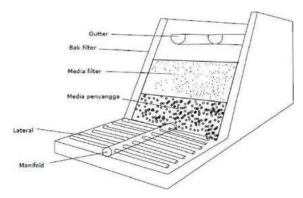
Dalam bangunan sedimentasi ini terdapat kriteria desain yang dapat digunakan dalam mempermudah desain. Adapun kriteria desain tersebut adalah sebagai berikut:

- Kedalaman air = 3 4.5 m
- Kecepatan aliran = 0.3 1.7 m/min
- Waktu detensi = 1,5 4 jam
- Surface loading = 1,25 2,5 m/jam
- Panjang/lebar = minimum ¼ Kedalaman air/panjang = minimum 1/15
- Weir loading rate = $9 13 \text{ m}^3/\text{m.jam}$

Bak sedimentasi dapat berupa circular, rectangular atau square dengan kedalaman 2-5 m. Dimana rectangular mempunyai panjang sampai 50 m dan lebar

10 m sedangkan square tank mempunyai panjang \pm 2,5 m. Slope ruang lumpur berkisar antara 2% - 6%, bilangan Reynolds < 2000 agar aliran laminer.

2.3.7 Filtrasi


Menurut Al-Layla pada tahun 1978, partikel tersuspensi dan partikel koloid di dalam air tidak bisa mengendap secara sempurna hanya dengan menggunakan proses sedimentasi. Untuk lebih menyempurnakan proses penyisihan partikel tersuspensi dan partikel koloid di dalam air, dapat dilakukan dengan menggunakan proses filtrasi. Proses filtrasi sendiri adalah suatu proses di mana air dilewatkan pada pasir dan kombinasi kerikil-kerikil untuk mendapatkan hasil air yang lebih baik.

Bakteri dan sejenisnya dapat dengan efektif dihilangkan dengan menggunakan proses filtrasi. Selain itu filtrasi juga dapat mengurangi warna, rasa, bau, kadar besi juga kadar mangan yang terdapat di dalam air. Proses pengurangan kadar-kadar tersebut tidak lepas dengan adanya proses fisika dan kimia yang terjadi di dalam proses filtrasi itu sendiri. Beberapa faktor yang berkontribusi di dalam proses removal filter adalah:

- 7. Proses penyaringan yang terjadi di setiap lapisan permukaan filter.
- 8. Proses sedimentasi di dalam filter.
- 9. Kontak antara partikel flok dengan lapisan kerikil atau dengan flok yang sudah terkumpul di atas lapisan filter.
- 10. Proses adsorpsi atau proses elektrokinetik.
- 11. Proses koagulasi di dalam filter.
- 12. Proses biologis di dalam filter.
- 13. Penggabungan zat-zat koloid di dalam filter.

Pada prosesnya, partikel tersuspensi yang ukuran nya terlalu besar akan tetap tertahan di atas lapisan pasir. Namun jika ukuran partikel terlalu kecil (contohnya: partikel koloid dan bakteri) akan lebih sulit untuk dihilangkan karena akan lebih mudah lolos pada lapisan pasir ini. Pada lapisan kerikil, jarak di antara lapisan kerikil berfungsi sebagai area sedimentasi partikel tersuspensi. Namun dapat juga digunakan oleh partikel- partikel flok yang belum seratus persen terendapkan pada bak sedimentasi untuk mengendap pada lapisan kerikil ini. Pada gambar 2.11 dapat

dilihat bagian-bagian filter.

Tabel 2.11 Bagian-Bagian Filter

Terdapat beberapa macam jenis filter modifikasi yang telah digunakan di mancanegara, antara lain *rapid sand filter*, *slow sand filter*, *pressure sand filter*, *multiple media filters*, *diatomaceous earth filters*, *upflow filters* dan lain sebagainya.

Menurut Al-Layla (1978), pada proses purifikasi air, *rapid sand filters* memiliki hasil effluent yang lebih baik jika dibandingkan dengan *slow sand filters*. Kecepatan pada *rapid sand filters* ini cukup tinggi dan laju filtrasi nya berkisar antara 4-5 m³/m².hr (namun terkadang laju filtrasi nya dapat lebih dari 6 m³/m².hr). Ukuran pasir efektif yang digunakan pada filter ini berkisar antara 0,450,55 mm. Lapisan filter ini bila dilihat dari bawah terdiri dari gravel dengan tebal berkisar antara 38-60 cm, sedangkan di atasnya terdapat pasir yang tebalnya kurang lebih 80 cm. Proses *backwash* pada *rapid sand filter* berbeda dengan *slow sand filter*. Pada *rapid sand filters* waktu *backwash* ditentukan dari head loss filter saat itu.

Keuntungan menggunakan *rapid sand filters* adalah area yang digunakan tidak begitu luas, pasir yang dibutuhkan lebih sedikit, kurang sensitif terhadap perubahan kualitas air baku, dan waktu yang dibutuhkan relatif lebih cepat jika dibandingkan dengan *slow sand filters*. Sedangkan kekurangan dari *rapid sandfilters* adalah tidak dapat mengurangi kadar bakteri di dalam air, membutuhkanbiaya yang mahal, membutuhkan keahlian khusus dan menghasilkan lumpur yang banyak.

Media filter dapat tersusun dari pasir silika alami, anthrazit, atau pasir garnet. Media ini umumnya memiliki variasi dalam ukuran, bentuk dan komposisi kimia Pemilihan media filter yang digunakan dilakukan dengan analisis ayakan. Hasil ayakan suatu media filter digambarkan dalam kurva akumulasi distribusi untuk

mencari ukuran efektif dan keseragaman media yang diinginkan. *Effective Size* (ES) atau ukuran efektif media filter adalah ukuran media filter bagian atas yang dianggap paling efektif dalam memisahkan kotoran yang besarnya 10% dari total kedalaman lapisan media filter atau 10% dari fraksi berat, ini sering dinyatakan sebagai P10 (persentil 10). P10 yang dapat dihitung dari rasio ukuran rata—rata dan standar deviasinya.

Uniformity Coefficient (UC) atau koefisien keragaman adalah angka keseragaman media filter yang dinyatakan dengan perbandingan antara ukuran diameter pada 60 % fraksi berat terhadap ukuran (size). Kriteria untuk keperluan rapid sand filter adalah:

Single media pasir: UC = 1,3 - 1,7

ES = 0.45 - 0.7 mm

Untuk dual media: UC = 1,4 - 1,9

ES = 0.5 - 0.7 mm

Pada perancangan bangunan air minum kali ini, kami menggunakan filter pasir cepat atau *rapid sand filter* adalah filter yang mempunyai kecepatan filtrasi cepat, berkisar 6 hingga 11 m/jam. Filter ini selalu didahului dengan proses koagulasi-flokulasi dan pengendapan untuk memisahkan padatan tersuspensi. Jika kekeruhan pada influen filter pasir cepat berkisar 5-10 NTU maka efisiensi penurunan kekeruhannya dapat mencapai 90-98% (Masduqi & Assomadi, 2012:171). Kriteria desain pasir cepat dapat dilihat pada tabel 2.12

Tabel 2.12 Kriteria Perencanaan Filter Pasir Cepat

N	No	Unit	Saringan Biasa (Gravitasi)	Saringan dengan Pencucian Antar Saringan
	1	Kecepatan penyaringan (m/jam)	6 – 11	6 – 11
	2	Pencucian:		
		Sistem pencucian	Tanpa/dengan	Tanpa/dengan
			blower & atau	blower & atau

Kecepatan (m/jam)	surface wash	surface wash
• , , ,	36 – 50	36 – 50
(jam)	10 – 15	10 – 15
Ekspansi (%)	18 – 24	18 – 24
	30 – 50	30 – 50
Dasar filter		
Lapisan penyangga dari atas		
ke		
Bawah		
Kedalaman (mm) ukuran butir		
(mm)	$80 - 100\ 2 - 5$	$80 - 100\ 2 - 5$
Kedalaman (mm) ukuran butir	80 – 100 5 – 10	$80 - 100\ 5 - 10$
(mm)		
Kedalaman (mm) ukuran butir	80 - 100	80 - 100
(mm)	10 – 15	10 – 15
Kedalaman (mm) ukuran butir		
(mm)	80 - 150	80 - 150
	Lama pencucian (menit) Periode antara dua pencucian (jam) Ekspansi (%) Dasar filter Lapisan penyangga dari atas ke Bawah Kedalaman (mm) ukuran butir (mm) Kedalaman (mm) ukuran butir	Lama pencucian (menit) Periode antara dua pencucian (jam) Ekspansi (%) Dasar filter Lapisan penyangga dari atas ke Bawah Kedalaman (mm) ukuran butir (mm) Kedalaman (mm) ukuran butir

No	Unit	Saringan Biasa (Gravitasi)	Saringan dengan Pencucian AntarSaringan
	Filter Nozzle	15 – 30	15 – 30
	Lebar slot nozzle (mm)		
	Prosentase luas slot nozzle		
	terhadap		

(SUMBER AIR BAKU:SUNGAI PROGU HULU,TEMANGGUNG)

luas filter (%)	< 0,5	< 0,5
	> 4%	> 4%

(sumber: SNI 6774-2008)

Rumus-rumus yang akan digunakan dalam perhitungan unit pengolahan ini ialah:

1. Luas permukaan bak

$$A = \frac{Q}{V}$$

keterangan:

A = Luas permukaan bak filtrasi (m^2)

 $Q = debit (m^3/dtk)$

V = kecepatan filtrasi (m/s)

2. Jumlah bak filtrasi

$$N = 1.2 Q^{0.5}$$

keterangan:

N = jumlah bak filtrasi

 $Q = debit filtrasi (m^3/dtk)$

3. *Headloss* (persamaan Darcy–Weisbach)

$$H_{\rm L} = f \, \frac{{\rm L} \, V^2}{{\rm D} \, 2 {\rm g}}$$

keterangan:

HL = kehilangan tekanan akibat gesekan (m)

f = koef kekasaran pipa

L = panjang pipa (m)

V = kecepatan aliran (m/s)

D = diameter pipa (m)

4. Nre (Bilangan Reynold)

$$Nre = \frac{\upsilon d V}{\mu}$$

keterangan:

 ρ = berat jenis (m³/s)

v = viskositas dinamis (N/ms²)

μ = viskositas kinematis

5. C_D (koefisien drag)

Untuk Nre < 1,
$$C_D$$
 = $\frac{24}{Nre}$

Untuk 1 < Nre < 10^4 , C_D = $\frac{24}{Nre}$ + $\frac{3}{\sqrt{Nre}}$ + 0.34

Untuk Nre > 10^4 = 0.4

keterangan:

 C_D = koefisien drag

Nre = bilangan reynold

2.3.8 Desinfeksi

Salah satu persyaratan kualitas air minum adalah persyaratan mikrobiologis, yaitu air harus bebas dari mikroorganisme patogen. Desinfeksi merupakan proses membebaskan air minum dari mikroorganisme patogen. Metode disinfeksi secara umum ada dua, yaitu cara fisik dan cara kimiawi. Desinfeksi secara fisik adalah perlakuan fisik terhadap mikroorganisme, yaitu panas dan cahaya yang mengakibatkan matinya mikroorganisme . Sedangkan metode disinfeksi secara kimiawi adalah memberikan bahan kimia ke dalam air sehingga terjadi kontakantara bahan tersebut dengan mikroorganisme yang berakibat matinya mikroorganisme tersebut.

Desinfeksi secara kimia menggunakan larutan kaporit, gas klor dan gas ozon. Sedangkan desinfeksi secara fisik menggunakan gelombang mikro dan sinar ultraviolet. Untuk membunuh mikroorganisme bersifat patogen terkandung dalam air, desinfektan/bahan desindeksi yang digunakan adalah kaporit, bromin klorida, gas klor, gas iod, ozon dan Kalium Permanganat. Kemampuan desinfeksi dalam pengolahan air minum adalah :

- 1. Menghilangkan bau.
- 2. Mematikan alga.
- 3. Mengoksidasi nitrit menjadi nitrat.

- 4. Mengoksidasi ammonia menjadi senyama amin.
- 5. Mengoksidasi fenol menjadi fenol yang tidak berbahaya.

Macam-macam faktor yang mempengaruhi efisiensi desinfeksi adalah:

- 1. Waktu kontak.
- 2. Konsentrasi desinfeksi.
- 3. Jumlah mikroorganisme.
- 4. Temperatur air.
- 5. pH.
- 6. Adanya senyawa lain dalam air.

Dalam perancangan kali ini, kami menggunakan metode desinfeksi dengan gas klor. Metode ini bertujuan untuk mengoksidasi logam-logam, membunuh mikroorganisme seperti plankton dan juga membunuh spora dari lumut, jamur, dan alga. Konsentrasi yang diberikan adalah 2-3 gr/m³ air, tergantung pada turbiditas air (Benny, 2008).

Klorin digunakan karena memiliki kecepatan oksidasi lebih besar dari aerasi, dan mampu mengoksidasi besi yang berikatan dengan zat organik. pH yang baik pada 8-8,3 oksidasi besi membutuhkan waktu 15-30 menit. Pada umumnya proses standar penurunan Fe dan Mn menggunakan koagulasi dengan alum, flokulasi, pengendapan, dan filtrasi dengan didahului proses preklorinasi. Dosis sisa klor yang dianjurkan 0,2-0,5 mg/l (Said, 2009).

Perlu dilakukan percobaan Daya Pengikat Chlor (DPC) untuk mengetahui dosis senyawa chlor (Cl₂) yang dibutuhkan oleh air untuk proses desinfeksi (membunuh bakteri). Daya Pengikat Chlor ditentukan cara selisih antara chlor yang dibubuhkan dengan sisa chlor setelah kontak setelah kontak selama 30 menit (Sawyer et al., 1978)

Rumus-rumus yang akan digunakan dalam perhitungan unit pengolahan ini ialah:

1. Penetapan DPC

- a. Siapkan labu erlenmeyer 500 ml/botol yang berisi sebanyak 3 buah.
- b. Siapkan larutan kaporit 0,1% (0,1 gram/100 ml air).

- c. Isi contoh air baku 250 ml yang sudah disaring ke dalam labu erlenmeyer, tambahkan larutan kaporit masing-masing 0,5 ml;0,75 ml;1,0 ml ke dalam labu Erlenmeyer.
- d. Kocok dan simpan di ruang gelap selama 30 menit.
- e. Periksa dan catat sisa klor dari masing-masing labu Erlenmeyer.
- f. Hitung DPC dengan rumus:

$$DPC = ([1000/250 \times V \times M] - D) \text{ mg/l}$$

Keterangan:

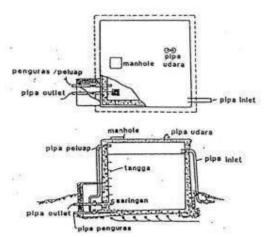
V = ml larutan kaporit 0,1% yang ditambahkan

M = kadar kaporit dalam air (misalnya = 60%)

D = sisa klor dalam air

- 2. Hitung dosis klor = Dosis klor (mg/L) = DPC + sisa klor
- 3. Kebutuhan klor = $Q \times Dosis klor \times Kemurnian$
- 4. Volume klor = Kebutuhan klor / Berat jenis klor
- 5. Volume pelarut = $\frac{100-\text{konsentrasi laruta}n}{\text{konsentrasi laruta}n} x vol kaporit$
- 6. Volume Larutan klor = $\frac{100}{konsentrasi \, larutan} x \, vol \, kaporit$
- 7. Dimensi Bak = $p \times l \times t$

2.3.9 Reservoar


Reservoar adalah tempat penampungan air bersih, pada sistem penyediaan air bersih. Umumnya Reservoar ini diperlukan pada suatu sistem penyediaan air bersih yang melayani suatu kota. Reservoar mempunyai fungsi dan peranan tertentu yang diperlukan agar sistem penyediaan air bersih tersebut dapat berjalan dengan baik.

Fungsi utama dari Reservoar adalah untuk menyeimbangkan antara debit produksi dan debit pemakaian air. Seringkali untuk waktu yang bersamaan, debit produksi air bersih tidak dapat selalu sama besarnya dengna debit pemakaian air. Pada saat jumlah produksi air bersih lebih besar daripada jumlah pemakaian air, maka kelebihan air tersebut untuk sementara disimpan dalam Reservoar, dan digunakan kembali untuk memenui kekurangan air pada saat jumlah produksi air bersih lebih kecil daripada jumlah pemakaian air. Berdasarkan tinggi relatif Reservoar terhadap

permukaan tanah sekitarnya, maka jenis Reservoar dapat dibagi menjadi 2 yaitu:

1. Reservoar Permukaan (Ground Reservoar)

Reservoar permukaan adalah Reservoar yang sebagian besar atau seluruh Reservoar tersebut terletak di bawah permukaan tanah.

Gambar 2.8 Reservoar Permukaan

2. Reservoar Menara (*Elevated Reservoar*) Reservoar menara adalah Reservoar yang seluruh bagian penampungan dari Reservoar tersebut terletak lebih tinggi dari permukaan tanah sekitarnya.

Gambar 2.9 Reservoar Menara

Sedangkan berdasarkan bahan konstruksinya, maka jenis Reservoar dapat dibagi menjadi 3 yaitu :

1. Reservoar Tanki Baja

Banyak Reservoar menara dan "standpipe" atau Reservoar tanah yang dikonstruksi dari bahan baja yang dibaut atau dilas. Karena baja beresiko terhadap karat dan mudah menyerap panas, maka perlu dicat dan dilindungi dengan "Cathodic Protection". Biasanya tangki baja jauh lebih murah dari tangki beton.

Gambar 2.10 Reservoar Tangki Baja

2. Reservoar Beton Cor

Tanki dan Reservoar beton pertama kali dibuat tanpa penutup. Perkembangan selanjutnya konstruksi ini memakai penutup dari kayu atau beton. Dengan tutup ini maka masalah sanitasi akan terselesaikan. Kelebihan dari



menggunakan beton cor adalah kedap air dan tidak mudah bocor. Kelemahan umum dari bahanbeton adalah biaya konstruksi yang relatif lebih tinggi.

Gambar 2.11 Reservoar Beton Cor

3. Reservoar Fiberglass

Penggunaan *fiberglass* sebagai bahan untuk membuat Reservoar memiliki beberapa kelebihan seperti ringan, tekstur dinding tanki kaku dan terlihat kuat. Namun dari kelebihan yang dimiliki, adapun kekurangan yang dimiliki yaitu rentan terhadap benturan dan dinding tanki mudah retak, tidak tahan terhadap UV dan oksidasi bila terjemur sinar matahari.

Gambar 2.12 Reservoar Fiberglass

2.3.10 Filter Press

Gambar 2.13 filter Press

(Sumber: https://www.sludgeprocessing.com/sludge-dewatering/belt-filter-press/)

Filter press secara umum terdiri dari plat-plat yang disusun secara seri. Diantara plat-plat ini terdapat ruang yang kemudian disebut dengan chamber. Plat itu sendiri tersusun dari besi/baja sebagai rangkanya, dan cloth/kain pada sisinya. Cloth inilah yang kemudian berfungsi untuk memisahkan lumpur dan air dengan adanya

bantuan tekanan. Secara lebih mendetail, prinsip kerja dari Filter Press adalah sebagai berikut:

- a. Lumpur dipompakan masuk ke dalam setiap chamber filter. Jumlah chamber disesuaikan dengan jumlah debit lumpur yang hendak diolah.
- b. Mesin akan memberikan tekanan pada setiap chamber-chamber ini sehingga air yang terkandung pada lumpur akan keluar dari pori-pori pada cloth.
- c. Setelah diberi cukup tekanan, chamber dibuka, dan didapatkan sludge cake solid dengan kandungan air yang sudah jauh berkurang.

Untuk meminimalisasi adanya lumpur yang menempel pada cloth, dapat disemprotkan air dengan tekanan cukup dari sisi luar chamber.

Tabel 2. 13 Konsentrasi BFP dewatering DS feed dan dewatered sludge (cake), dosis polimer, padatan cair dan lumpur serta padatan yang diperoleh kembali

Sludge origin	% DS content – Feed	% DS content – Cake / Typical	% DS content - Cake / Range	Loading/m belt width – liquid m³/h	Loading/m belt width – solids kg/h	Polymer dose – g/kg DS
Primary	4-8	30	26-35	14-38	1130-1590	1.5-2.5
Waste activated sludge (WAS)	1-2	16	12-20	11-23	180-340	5-10
Sequencing batch reactor (SBR)	1-2	16	12-19	11-22	250-360	5-7.5
Membrane bioreactor (MBR)	1-2	15	11-18	16-25	230-320	5.5-10
Anaerobically- digested (AD) primary	2-5	28	24-35	14-37	680-910	2-5
Anaerobically- digested WAS	2-3	20	13-23	6.6-20	230-410	4-10
Mixed, primary + WAS	3-5	23	15-25	9.0-27	340-820	3-5.5
Mixed, AD primary + WAS	2-4	24	15-28	9.0-27	320-540	4-8.5

(Sumber: Metcalf & Eddy, 2014; Andreoli et al, 2007)

2.4 Persen Penyisihan Unit Pengolahan

Berdasarkan studi literatur yang telah kami kumpulkan, diperoleh rangkuman % penyisihan untuk unit pengolahan beserta keseluruhan parameter dalam air sehingga dapat diolah dalam bangunan pengolahan air minum yang telah direncanakan. Berikut rangkuman % penyisihan air beserta sumber yang tertera:

Tabel 2.14 Jenis Pengolahan Berdasarkan Parameter

No	Unit	Parameter	%	Sumber
	Pengolahan	Tersisih	Removal	Sumber
1.	Intake	-	-	-
2.	Prasedimentasi	Kekeruhan	80%	Reynolds/Richards 2nd, Unit Opereations and Processess in Environmental Engineering, page 130)
3.	Koagulasi	-	-	-
4.	Flokulasi	-	-	-
5.	Sedimentasi	Kekeruhan	90%	Droste, Ronald L. 1997. Theory and Practice of Water and Wastewater Treatment. hal 224
6.	Rapid Sand Filter	Kekeruhan	75%	Syed R Qasim, Wastewater Treatment hal 216
7.	Desinfeksi	Coliform	100 %	Droste, 1997, Theory and Practice of Water and Wastewater Treatment chapter 9, hal. 224
8.	Reservoar	-	-	-
9.	Filter Press	-	-	-

2.5 Profil Hidrolis

Untuk membuat profil hidrolis perlu perhitungan kehilangan tekanan pada bangunan dan kehilangan tekanan pada perpipaan dan aksesoris. Kehilangan tekanan akan mempengaruhi ketinggian muka air di dalam bangunan pengolahan.

a. Kehilangan Tekanan pada Bangunan Pengolahan

Untuk membuat profil hidrolis perlu perhitungan kehilangan tekanan pada bangunan. Kehilangan tekanan akan mempengaruhi ketinggian muka air di dalam bangunan pengolahan. Kehilangan tekanan pada bangunan pengolahan ada beberapa macam, yaitu:

- 1. Kehilangan tekanan pada saluran terbuka.
- 2. Kehilangan tekanan pada bak.
- 3. Kehilangan tekanan pada pintu air.
- 4. Kehilangan tekanan pada weir, sekat dan lain-lain harus di hitung secara khusus.

b. Kehilangan Tekanan pada Perpipaan dan Aksesoris

Kehilangan tekanan pada saluran terbuka berbeda dengan cara menghitung saluran tertutup. Kehilangan tekanan pada perpipaan dan aksesoris ada beberapa macam, yaitu:

- 1. Kehilangan tekanan pada perpipaan dan aksesoris.
- 2. Kehilangan tekanan pada perpipaan.
- 3. Kehilangan tekanan pada aksesoris.
- 4. Kehilangan tekanan pada pompa.