SHOWN MASON WITH SHAW THAT ### KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR #### **UPT TEKNOLOGI INFORMASI DAN KOMUNIKASI** Jl. Raya Rungkut Madya Gunung Anyar Surabaya Telp.(031) 8793589 Laman: http://upttik.upnjatim.ac.id, Email: upttik@upnjatim.ac.id ### SURAT KETERANGAN HASIL PEMERIKSAAN TINGKAT PLAGIARISME Nomor: 328/UN63/UPTTIK/VII/2022 Yang bertanda-tangan di bawah ini, Nama : Mohamad Irwan Afandi, ST, NI P3K : 197607182021211003 Jabatan : Kepala UPT TIK – UPN "Veteran" Jawa Timur dengan ini menerangkan bahwa Penulis telah melakukan pemeriksaan tingkat kesamaan (plagiarisme) menggunakan *software* **Turnitin** secara mandiri terhadap dokumen dalam daftar di bawah ini: Judul Karya Tulis : A BIODIESEL PRODUCTION TECHNOLOGY FROM USED COOKING OIL: A REVIEW Jenis Publikasi : Jurnal Penulis : NOVE KARTIKA ERLIYANTI , ST., MT. Tingkat Kesamaan (%) : 13% Demikian Surat Keterangan ini dibuat dengan sebenarnya, agar dapat digunakan sebagaimana mestinya. Surabaya, 07 September 2022 Kepala UPT TIK Mohamad Irwan Afandi, ST, MSc. NI P3K 197607182021211003 ## A BIODIESEL PRODUCTION TECHNOLOGY FROM USED COOKING OIL: A REVIEW by Nove Kartika Erliyanti **Submission date:** 07-Sep-2022 11:06AM (UTC+0700) **Submission ID:** 1894157817 **File name:** JURNAL_IPTEKS_ITS_1.pdf (264.05K) Word count: 5802 Character count: 31963 #### REVIEW PAPER ### A BIODIESEL PRODUCTION TECHNOLOGY FROM USED COOKING OIL: A REVIEW Erwan Adi Saputro* | Achmad Rizaldi | Tahan Simamora | Nove Kartika Erliyanti | Rachmad Ramadhan Yogaswara ¹Dept. of Chemical Engineering, UPN Veteran Jawa Timur, Surabaya, Indonesia #### Correspondence *Erwan Adi Saputro, Dept of Chemical Engineering, UPN Veteran Jawa Timur, Surabaya, Indonesia. Email: erwanadi.tk@upnjatim.ac.id #### Present Address Faculty of Engineering, UPN Veteran Jawa Timur, Jl. Raya Rungkut Madya, Gunung Anyar, Surabaya 60294, Indonesia #### Abstract Used cooking oil is widely considered waste because it can damage the environment and cause health problems. Meanwhile, used cooking oil can be used as a substitute raw material for Crude Palm Oil (CPO) in Indonesia's national biodiesel program. Indonesia has a remarkable ability to use used cooking oil as a raw material for making biodiesel. If the 1.2 million kiloliters of biodiesel made from CPO raw materials are exchanged with used cooking oil raw materials, it can save approximately Rp. 4.2 trillion. There are various process technologies in making biodiesel, including microemulsion, pyrolysis, and transesterification. Transesterification is a process in which triglycerides and methanol are reacted to create biodiesel and glycerol as a by-product. Transesterification using a homogeneous catalyst has advantages such as lower cost, relatively short processing time, and higher yield of biodiesel products. Transesterification using a homogeneous catalyst has the disadvantage of a more complex separation. This literature study aims to explain the method for biodiesel production and becomes a reference in terms of process selection in biodiesel manufacturing plants, especially from used cooking oil as raw material. #### KEYWORDS: Biodiesel, Homogeneous Catalyst, Used Cooking Oil, Transesterification #### 1 | INTRODUCTION The global energy needs, especially in Indonesia, have increased in line with the economic and population growth. Meanwhile, non-renewable energy reserves, such as oil, natural gas, and coal, are reducing year to year, and those fuels have been predicted will be shorted in the following decades. The lack of non-renewable fuels can be reduced by utilizing biodiesel fuel, where the raw material is available and renewable [1]. The utilization of renewable liquid fuel can be used by using biodiesel, the raw material of which is likely to be developed further. As for biodiesel, it can be distinguished into two: from the origin of plants Sanutro a Al FIGURE 1 The biodiesel reactions, Gliserol Metanol Metil Ester and animals. Several studies have shown that biodiesel's cetane number (CN) is relatively higher than that of diesel oil (diesel). The cetane number for diesel oil is 45, 62 for those based on palm oil, 51 for jatropha curcas oil, and 62.7 for those based on vegetable oil [2]. Biodiesel also has physical and chemical properties similar to diesel oil. Therefore it can be used as an alternative to diesel-engined mounts. When compared to diesel, biodiesel has unique features: (i) bonding the need for oil imports from foreign countries, (ii) being able to be produced in rural areas, and (iii) being environmentally friendly because biodiesel does not have sulfur elements so there are no SOx emissions, (iv) biodiesel can be obtained from agricultural products, so it can be renewed, (v) safe in storage and transportation because it does not contain toxins, (vi) it has a high cetane number, (vii) it is biodegradable: it is much faster to decompose by microorganisms than petroleum. Biodiesel's place and chemical properties are similar to those of petro-diesel fuel. Patil and Deng reported that biodiesel is better than petro-diesel in terms of biodegradability, free sulfur content, viscosity, density, flash point, and aromatic content. #### 2 | PREVIOUS RESEARCHES Trigliserida Various studies of biodiesel from used cooking oil. Many studies have been carried out, including research using the transesterification process method using cooking oil, methanol, and activated zeolite. For the research variables, namely reaction time and zeolite concentration, the best-operating conditions were obtained when the reaction time was 5 hours with a zeolite concentration of 1% and biodiesel yield of 12%. Biodiesel research uses the transesterification progress method made from Crude Palm Oil (CPO), methanol, and $CaCO_3$ heterogeneous catalysts. The research variables were the molar ratio of methanol to CPO 9:1, reaction temperature of 70C, reaction time of 1.5 hours, and CaO concentration of 1.5%. Biodiesel conversion obtained is 74.60%. Research on biodiesel production from beef tallow by transesterification process with NaOH catalyst. With a reaction time of 30 minutes, a reaction temperature of 50°C, and a catalyst concentration of 0.8%, producing a yield of 95.67% . The most commonly used biodiesel production process is transesterification. The raw material used in this process is triglycerides triglycerides as used cooking oil). The transesterification process, in green, is the reaction of triglycerides with alcohol with the help of a catalyst to produce fatty acid methyl esters and glycerin. Fatty acid methyl ester or FAME (Fatty Acid Methyl Ester). The transesterification reaction can be seen in Fig. 1 Biodiesel is produced from fatty acid triglycerides. Several other types of vegetable oils, such as sunflower, corn, and olive oil, are abundant in many areas, along with some wastes, such as cooking oil and animal fats, which are attractive for biodiesel production. Used cooking oil is a type of vegetable oil left over from various types of cooking oil, such as oil from vegetables, corn, and others. The definition of used cooking oil is oil that has been used for frying more than two or three times and is categorized as waste because it can cause environmental and health problems. Residual cooking oil is commonly found in household activities and the food processing industry, such as restaurants and fast-food restaurants. Generally, the waste oil is | Year | Quantity (tons) | |------|-----------------| | 2012 | 2.289.582 | | 2013 | 2.219.296 | | 2014 | 2.421.120 | | 2015 | 2.864.155 | | 2016 | 3.058.992 | | 2017 | 3.480.087 | **TABLE 1** Palm cooking oil consumption data (Adaileh, 2012). brown in color, thick in texture, and contains large amounts of free fatty acids (FFA). Used cooking oil can contain carcinogenic compounds and is harmful to the body. Therefore, cooking oil can no longer be used for processing, a useless waste. So far, used cooking oil is just thrown away and becomes waste. However, used cooking oil can be used as a substitute for CPO oil in the Indonesian biodiesel state program. Not only innovative and economical, but this step can also minimize environmental waste, impact the economy, both for health, and reduce greenhouse gas emissions to support regional development. Research from Smith et al. 6 proved that waste cooking oil and fat have significant potential and can reduce the final price of biodiesel because the raw material is lower than pure vegetable oil. Indonesia has a high potential to utilize used cooking oil as raw material for biodiesel production. The rest of Indonesia's cooking oil consumption is relatively high because the European Union produces 22.7 million tons, the United States approximately 16 million tons, India 23 million tons, and Indonesia 18.422 million tons. Unfortunately, only 18.5 percent can be collected as raw material for used cooking oil. The benefit, in terms of costs for production, saves 35% more. If 1.2 million kiloliters of biodiesel derived from CPO oil were transferred to used cooking oil collected, it could save approximately IDR 4.2 trillion. According to Pertamina's Vice President of Strategic Planning [8], the utilization of used cooking oil and its processing into biodiesel requires the management of integrated material flow, information flow, and money flow. All flow will involve parties such as consumers of cooking oil, waste cooking oil collector, biodiesel processor, Pertamina, and biodiesel consumers. Each one has different roles and interests. This also needs to be considered so that the biodiesel supply chain system can be overcome by considering the interests of all involved. As seen in Table $\boxed{1}$ the data consumption of palm cooking oil from 2012 to 2017 has increased. From these data, a lot of used cooking oil will be wasted, so efforts are needed to utilize used cooking oil as biodiesel fuel. Utilization of New and Renewable Energy (EBT) in the transportation sector shows that biodiesel is starting to develop rapidly in line with the application of the mandatory biofuel policy, which requires a mixture of biofuel to fuel as much as 30% (B30) $\boxed{9}$. #### 3 | MATERIAL AND METHOD The biodiesel manufacturing process with the transesterification process uses a homogeneous base catalyst. It starts with entering all raw materials such as oil with methanol in the reactor assisted by a catalyst NaOH. This works to anticipate the reaction transesterification. The process is divided into three parts. They are as follows. #### 3.1 | Raw material Preparation Stage Used Cooking Oil is accommodated in a holding tank, heated by steam. The raw material for used cooking oil is still high in FFA. We put it into the mixer with added activated carbon to reduce the FFA levels so that the transesterification reaction can run optimally and minimize the saponification reaction. It then flowed to the filter press to separate the used cooking oil, which had reduced its FFA content with activated carbon. Then the used cooking oil was poured into the reactor with the addition of a solution of Methanol and NaOH, which had previously been mixed in Mixer I. FIGURE 2 The research block diagram, #### 3.2 | Reaction Stage Inside the reactor, the Triglycerides contained in the used cooking oil then react with 98% methanol which causes the reaction transesterification to form a methyl ester product (Biodiesel) and glycerin by-products with a conversion reaction of 97%. Furthermore, Methyl ester products, glycerin, water, FFA, NaOH and methanol, and residual triglycerides were separated using a decanter and distillation column. #### 3.3 | Purification Stage The Methyl Ester product mixture that comes out of the reactor enters the decanter to be separated from the glycerin. Glycerin, NaOH, and water will come out as under-flow products and then be stored in a holding tank. Meanwhile, the methyl ester, which still contains FFA, triglycerides, and residual methanol, is separated using a distillation column. Materials with lower boiling points will evaporate as the top product (Methanol and triglycerides). Meanwhile, the products of methyl ester and FFA will come out as the bottom product to be cooled first, use a cooler until the temperature is and then flow into the holding tank methyl ester products. The methanol triglyceride mixture is then separated using distillation column II to purify methanol. Triglycerides, the bottom product, are channeled to the Waste Treatment Plant (WTP) [10]. The methodology used in this research is a literature study where data is obtained from previous research through journals and books regarding biodiesel. Everything that is done, from problem formulation to decision making, is modeled in a flow chart in Fig. 2 which is expected to explain the steps to be taken. The literature study focuses on collecting literature references that would be used as a reference to be discussed. The second step, data collection, collects data obtained from previous research. In the third step, data processing, all data that has been obtained would be processed in such a way that the data obtained is easily understood and understood by the reader. The fourth step is analysis and evaluation. The analysis process consists of three main objectives, i.e. finding biodiesel parameters according to SNI, discovering various production processes, and identifying various purification substances in the process of making biodiesel. After that, the evaluation carried out was to determine the biodiesel production process that had the best results and | TABLE 2 | The physical and | chemical pro | perties of biodiesel | (SNI) [13]. | |---------|------------------|--------------|----------------------|-------------| | | The physical and | onemen pro | perties or oromicse. | (62,12) | | Test Parameter | 3est Method | Requirements | Unit Min/Max | |------------------------------------------|---------------------|--------------|---------------------------| | Cetane number | SNI 7182:2015 | 51 | Min | | Acid number | SNI 7182:2015 | 0.4 | Mg-KOH/g, maks | | Iodine number | SNI 7182:2015 | 115 | %-mass (g-I2/100 g), maks | | Flashpoint (covered bowl) | SNI 7182:2015 | 130 | °C min | | Sulfated ash | SNI 7182:2015 | 0.02 | %-mass, maks | | Carbon residue in the original sample or | SNI 7182:2015 | 0.05;0.3 | %-mass, maks | | i0% distillation dregs | | | | | Distillation temperature 90 | SNI 7182:2015 | 360 | °C maks | | Total glycerol | SNI 7182:2015 | 0.24 | %-mass, maks | | Sulfur | SNI 7182:2015 | 10 | Mg/kg, maks | | Phosphor | SNI 7182:2015 | 4 | Mg/kg, maks | | Copperplate corrosion (3 hours at 50°C | 3 VI 7182:2015 | Number 1 | | | Glycerol free | SNI 7182:2015 | 0.02 | %-mass, maks | | Density (40°C) | SNI 7182:2015 | 850-890 | Kg/m3 | | Methyl ester content | SNI 7182:2015 | 96,5 | %-mass, min | | Kinematic viscosity (40°C | SNI 7182:2015 | 2,3-6,0 | mm2/s (cSt) | | Oxidation stability | SNI 7182:2015 | 600 | Minute | | Induction period | SNI 7182:2015 | 45 | Minute | | Monoglycerides | SNI 7182:2015 | 0.55 | %-mass, maks | | Metal II (Ca+Mg) | EN 14538 | 5 | Mg/kg, maks | | Water content | ASTM D-6304 | 350 | Ppm, maks | | CFPP | ASTM D-6371 | 15 | °C maks | | Color | ASTM D-1500 | 3 | Maks | | Metal I (Na+K) | EN 14108/14109, EN | 5 | Mg/kg, maks | | | 14538 | | | | Total contaminants | ASTM D 2276; ASTM | 20 | Mg/liter, maks | | | D 5452; ASTM D 6217 | | | | Source: 13 | | | | Source: 13 was in accordance with SNI. The last step is compilation. After analysis and evaluation, conclusions can be drawn from the results of the data that have been discussed. #### 4 | FINDINGS AND DISCUSSION #### 4.1 | Factors Affecting The Production of Biodiesel Various processes in the manufacture of biodiesel can be carried out by three processes, namely (i) Micro Emulsion Process; (ii) Pyrolysis Process; and (iii) Transesterification Process. - 1. Micro Emulsion Process. Microemulsion means an action to reduce the viscosity of vegetable oil. The process is carried out using an oil dissolution process with methanol. However, the research results show that the methanol used as an emulsifier is relatively large; as a result, it can increase volatility and make its flash point low. - 2. Pyrolysis Process. Pyrolysis is a process of decomposition of vegetable oil using heat, or it can also be by using a catalyst to break the chain in hydrocarbons. Catalytically breaking the botanical oil chain is carried out using a catalyst, including SiO2 or Al2O3, at a temperature of 450OC. Then the products are separated to make biodiesel and biogasoline. The advantages of biodiesel products derived from this process are their compatibility with diesel from refined petroleum, while the drawbacks of this process must be the absence of oxygen. Therefore the fuel should not be oxygenated, and the tools used in this method are expensive. - 3. Transesterification Process. The transesterification process is the process of a chemical reaction between alcohol which reacts with triglyceride compounds from oil, the alcohol used in this process is methanol. It uses the help of a homogeneous base catalyst (NaOH). The transesterification reaction using a base catalyst is faster and is also often used computational transesterification which transesterification transesterification which is also often used computational TABLE 3 Process Selection (Zhang, 2003). | Comparison | I | Biodiesel Production Methods | | |--------------|-------------------------------------|-------------------------------|----------------------------| | Comparison | Microemulsion | Pyrolysis | Transesterification | | Raw material | Soybean oil and methanol | Vegetable oil and petroleum | Vegetable oil and methanol | | Operating | Room temperature 30°C | The temperature at 500°C, | Temperature 60°C, | | Conditions | Reaction time 1 hour | Atmospheric pressure 1 atm | Atmospheric pressure 1 atm | | | | Reaction time 30 minute | Reaction time 2 hours | | Conversion | 70-80% | 50% charcoal, 30% syngas, | 95.0 - 99.5% | | | | 20% crude oil | | | Catalyst | Tween 80, oleique plurol, | Catalyst: SiO_2 , Al_2O_3 | Catalyst: H_2SO_4 , | | , | Cremophor RH40, labrasol | 2, 2, 3 | KOH/NaOH | | Product | Carnauba-Wax microemulsion, | Gasoline, biodiesel | Metil ester / Biodiesel | | | lubricating oil, biodiesel. | , | | | | cleaning fluid, antiseptic formula, | | | Biodiesel characterization through the National Standardization Agency already set SNI for biodiesel products. Some of the parameters are listed in Table 2 It shows several test parameters and requirements in accordance with SNI standards. Based on the above aspects stated in Table 3 the transesterification process was chosen in the manufacture of biodiesel with the consideration that the conversion produced is higher, the catalyst used is easy to obtain and relatively inexpensive, and the production process is not too complex. Table 4 indicates the research regarding biodiesel production. **TABLE 4** The types of biodiesel production methods. | # | Process Method | Ingredients | Variable | Purification | Conclusion | |---|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | Esterification
Transesterification
(Kementerian
ESDM
Indonesia [14]) | Coconut oil methanol Silica
Alumina | Operating temperature Solvent-Reactant Flow Rate | Washed with water | The esterification-
transesterification process
using methanol obtain-ned,
among others, the best flow
rate and temperature in the
extraction process was 50
milliliters/ minute and 60°C,
yielding 38.36% for the
transesterification process at
60°C with a yield of 94.94%. | | 2 | Esterification-
Transesterification
(Nugraha and
Taharuddin [15]) | CPO Off
Grade Methanol Sulfuric
acid KOH | CPO variations: Sulfuric acid CPO variations:
Methanol | Added hydrochloric acidWashed with waterIn the oven | The more the number of catalysts in the esterification step, the free fatty acid content will decrease. Yield increases with the addition of methanol and KOH | | 3 | Fast Single-Phase
Process (Arita
et al. 16 S. Arita,
2008) | CPO Methanol and Tertrahy-drofuran (1:2) Sulfuric acid NaOH | CPO variations: Methanol NaOH variations: oil | Added N-HexaneWashedAquadestIn the Oven | Transesterification using the addition of co-solvent compounds gives the amount of biodiesel content to be greater than the conventional method, as much as 5%. The highest yield is 98.42%. | 65 | # | Process Method | Ingredients | Variable | Purification | Conclusion | |---|---|---|--|---|--| | 4 | Ultrasonic Wave
Assist (Putri
et al. (3)) | Coconut oilMethanolNaOH | Feed Initial Temperature Variation of CPO: Methanol Variations of NaOH: Oil | Washed with water In the oven | Using the help of an ultrasonic wave can increase the conversion. conversion resulting from ultrasonic waves is 85.66%, and conventional is 20.15% | | 5 | Methanolysis
(Transesterification) (Rachmaniah
et al. [17]) | Coconut oilMethanol CaCO₃ | Variation of oil: Methanol Variation of CaCO₃: oil | Washed with waterIn the oven | Using a $CaCO_3$ catalyst that has been ignited, the biodiesel yield is 75.02%. | | 6 | Transesterification
Using Microwaves
(Padil et al. (IS)) | Coconut oilMethanolKOH | Coconut oil
(mole) Catalyst
concentra-
tion Reaction
time Power vari-
ation | • Washed using aquadest at 40°C | The best results were obtained at 0.20% KOH and a reaction time of 150 seconds and 400 watts of power in the microwave, with the yield of biodiesel products formed being 93.22%. | | 7 | Live
Transesterification
(Hidayanti
et al. (19) | CPOMethanol99%NaOH | CPO feed
mole ratio:
Metanol Catalyst
weight | The washing process is carried out with aqua dest Dried in the oven with a temperature of 80°C | The bigger the mole ratio of methanol: to oil, the higher the yield. The heavier the catalyst, the higher the yield of biodiesel produced. The purity of the methyl ester in bio-diesel is 54.75%. | | 8 | Static Mixer
(Ristianingsih
et al. 20) | Palm oil (RBDPO) Methanol KOH | Combination of KOH Catalyst Concentration Quantity Variation Static Mixer Module (Static Mixer) | Washing With Aquadest After washing, evaporation is carried out at T=65°C | The catalyst can be replaced by using 0.9 modules (static mixer) of 58.1 centimeters | | # | Process Method | Ingredients | Variable | Purification | Conclusion | |-----|--|--|--|--|---| | 9 | Transesterification
(Sari et al. [21]) | Used cooking oil Methanol Activated Natural Zeolite (H-Zeolite) | Reaction
TimeZeolite | Separation on the Separat-
ing Funnel | The best-operating conditions were obtained when the reaction time was 5 hours with a zeolite concentration of 1% and biodiesel yield of 12%. | | 10 | Transesterification
(Kusyanto and
Hasmara ²²) | Palm oil Methanol Rice Husk
Ash with
calcined
KOH | • Catalyst
Mass | Washing With Water Heating at 100°C | Rice husk ash can be used as a heterogeneous catalyst with 1.9 N KOH, and the highest yield is 67%. | | 11. | Catalytic Cracking
Process (Hazzamy
et al. (23)) | Cooking oilFly Ash | Operating Condition Temperature Fly Ash Weight Percentage | | The catalytic cracking process of used cooking oil produced the highest yield of 31.72%, with a 9% weight of fly ash and a reaction temperature of 420°C. | | 12. | Catalytic Cracking
Process (Buchori
et al. (24)) | Used cooking oil Zeolite Activation Using H₂SO₄ solution | Concentration of H₂SO₄ Natural Zeolite Catalyst Size | | The best results were obtained under the operating conditions of a natural zeolite catalyst with a size of 0.125 mm, which was activated with sulfuric acid with a concentration of 4N. | | 13. | Transesterification
Process (Kartika
Sari Dwi
Udyani; Matrika ^[25]) | Castor OilMethanolNaOH | • Zeolite-
Biodiesel
Mass Ratio | Using Zeolite Adsorbent
Activated By Sulfuric
Acid | The higher the ratio of zeolite-biodiesel, the lower the acid number and density of the purified biodiesel. The biodiesel content was 44.66% before purification and 55.78%. after purification | | 14. | Dry Washing
Process (Suriaini
et al. (26) | Cooking Oil96NaOH | • Variation of
Bentonite
Adsorbent
Mass | With the addition of acti-
vated bentonite, then
stirred and then filtered | The best results are with 3% bentonite adsorbent mass with a biodiesel yield of 91.73% | 67 | # | Process Method | Ingredients | Variable | Purification | Conclusion | |-----|---|--|---|---|--| | 15. | Esterification-
Transesterification
(Resti and
Zibbeni (27)) | • Nyamplung Seeds • Degumming with the addition of 0.5% weight of H_3PO_4 | Washing
Method | Stir Washing, Using Aquadest Then Process Drying In Oven At T = 110°C. Bubble Washing Using Aquadest Connected To An Aerator Pump As A Bubble Producer. Then Drying In The Oven At A Temperature Of 110°C. Dry Washing Using Magnesium Silicate With Stirring. Then Separate Between Biodiesel And Adsorbent Using A Vacuum Pump Filter. | Biodiesel content obtained: 1. For stir washing 85.47% 2. For bubble washing 85.67% 3. For dry-washing 89.93% | | 16. | Esterification-
Transesterification
(Arifin et al. [28]) | Cooking Oil Methanol Esterification Snail Shell as Heterogeneous
Catalyst | Amount of
Catalyst Adsorbent
(magnesium
silicate) | Using Magnesium Silicate
Takes Water's Role in
Absorption Of Impurities
In Biodiesel. | The best results were obtained with a yield of 63% with a catalyst concentration of 6%, and a magnesium silicate of 1%. | | 17. | Esterification
(Widayat and
Suherman ^[29]) | • The ratio | The ratio of free fatty acid volume and temperature Volume ratio of the volumetry acids and catalyst | Done in a coolant triple-neck bottle Performed with methanol and an acid catalyst (i.e., 1M sulfuric acid). Free fatty acids were analyzed every 5 minutes. | The rubber seed oil content stained is 50.5%. Composition of free fatty acids, including 14.34% linoleic acid. The highest conversion to diesel oil is obtained at 59.91% and the lowest at 48.24%. Variable raThe variable volume of free fatty acid to the volume of catalyst is stronger than changing temperature. | | 18. | Transesterification (Istadi et al. [30]) | K₂O/CaO-ZnO Soybean oil Methanol | Weight of catalyst 6 wt. Oil to methanol mole ratio 1:15 Temperature 60°C | Co-precipitation method
of calcium and zinc nitrate
with potassium nitrate
impregnation | As a result, the catalyst showed high catalytic activity (80% yield of fatty acid methyl ester (FAME) after three use cycles) and could be reused after regeneration. The catalyst also showed acceptable stability of the catalytic activity, even after three cycles of use. | | # Process Method | Ingredients | V <mark>az</mark> iable | Purificatio | Conclusion | |---|---|---|--|---| | 19. Central Composite Design (CCD) Method (Widayat et al. [31]) | Coconut oilPalm oilMethanol | The ratio of methanol to total vegetable oil reaction concentration temperature. | Using ultrasonic 6000 as the reactor where the transesterification reaction occurs. Experiments were carried out in ultrasonic cleaners and batch systems. | Optimum conditions of volume ratio of palm and coconut oil 4:1, catalystoncentration of KOH,0.3%, and the mole ratio of methanol to oil 7:1. The biodiesel yield was determined under these conditions and obtained at 81.105%. | TABLE 5 The types of pre-treatment methods for producing biodiesel. | Treatment | Advantages | References | |----------------------------|---|---------------------------| | Esterification Process | This method is more suitable to apply to oils or fats with high | Nugraha and | | | FFA and low-quality ingredients. | Taharuddin 15 | | Degumming + Esterification | This method minimizes impurities and purifies the oil before the | Resti and
Zibbeni [27] | | Process | esterification process is carried out so that when the esterification | Zibbeni [27] | | | is faster. | | | Neutralization | The neutralization method uses NaOH solution to minimize the | Hida <u>yan</u> ti | | | need for methanol for esterification. | et al. 19 | | Micro-Filtration | Microfiltration minimizes suspended solids and organic | Buchori et al. [24] | | | compounds, including protein, carbohydrates, and free fatty acids | | | Adsorption | Reducing FFA levels and minimizing sulfuric acid catalysts that | Adaileh and | | • | can interfere with the transesterification process | Alqdah 🔼 | **TABLE 6** The types of biodiesel production process methods. | Treatment | Advantages | References | |---|--|---| | Methanol transesterification | Methanol has high reactivity and is relatively inexpensive | Nugraha and
Taharuddin ¹⁵ | | Transesterification of methanol and tetrahydrofuran | Gives higher methyl ester content by 5% | Rachmaniah
et al. 17 | | Ultrasonic wave-assisted
methanol transesterification | Deliver higher conversions | Putri et al. 🗓 | | Transesterification of
methanol with NaOH catalyst | NaOH can lower viscosity more than KOH catalyst | Putri et al. 🗓 | | Transesterification of methanol with $CaCO_3$ catalyst | Homogeneous catalysts have the disadvantage of more difficult product separation | Putri et al. 3 | | Catalytic Cracking Process | More efficient raw materials | Hazzamy
et al. ²³ | | Methanol Transesterification
with Static Stirrer | Minimizes the need for a catalyst | Sari et al. [21] | | Methanol transesterification
With Microwave
(Microwave) | Deliver higher conversions | Hidayanti
et al. ^{[19} | Table shows various methods for the preliminary stage in the manufacture of biodiesel, aiming to minimize the levels of FFA in the raw material before the transesterification reaction occurs between the raw material and methanol. Table 6 shows various methods for the processing stage in the manufacture of biodiesel, aiming to increase the conversion of the transesterification reaction between the raw material and methanol. **TABLE 7** The types of biodiesel purification methods for producing biodiesel. | Treatment | Advantages | References | |---|---|---| | Washed and then in the oven | The highest yield was 98.42%. | Rachmaniah
et al. 17 | | Washed then vacuum dryer | Methyl ester conversion reaches more than 97.00% | Hidayanti
et al. ^{[19} | | Washed then vacuum rotary evaporator | biodiesel yield 87.30%. | Sari et al. 21 | | Bleaching earth then filter vacuum pump | More increase conversion | Suriaini et al. 26 | | Added zeolite | Easy to get raw materials | Kartika Sari Dwi
Udyani; Matrika ^[25] | | Dry Washing | The biodiesel content obtained for dry washing is 89.93% | Resti and
Zibbeni [27] | | Stir washing | The biodiesel content obtained for stir washing is 85.47% | Resti and
Zibbeni ²⁷ | | Buble washing | The biodiesel content obtained for bubble washing is 85.67% | Resti and
Zibbeni ²⁷ | TABLE 8 The types of transesterification process for producing biodiesel. | Process | Advantages | Weakness | |--|---|---| | Homogeneous
Catalyst | using an alkaline catalyst so that the reaction time runs faster The catalyst used is NaOH and KOH. The price is relatively low and easy to obtain [31] | very complex separation in product purification its selectivity to the FFA content of the raw material | | Heterogeneous
Catalysts
Enzyme
Catalyst | can be separated from the reaction mixture directly, for example, by filtration. The lipase enzyme is an effective catalyst that converts all the FFA content in WCO into fatty acid methyl esters. when lipase is used to catalyze the transesterification reaction, glycerol can be recovered asily The yield of biodiesel is higher, and the reaction can be carried out at low temperatures and pressures, which can reduce energy consumption 2 | Related to the surface area of the catalyst available. there is an open space for the new reactant molecules to attach or absorb, thereby limiting the rate of reaction expensive lipase cost lipase inhibition by methanol glycerol adsorption on lipase long reaction time 32 | Table 7 shows the various methods of purification steps for the manufacture of biodiesel which aim to remove impurities that are still included in the biodiesel that is formed. #### 4.2 | Comparison of Transesterification Process The transesterification process method using a catalyst can be separated into three types: a homogeneous catalyst, heterogeneous catalyst, and enzyme catalyst. The process often applied in the industrial world is transesterification using a homogeneous catalyst (Table 8). #### 5 | CONCLUSION Based on this review, it can be concluded that the best preliminary method for making biodiesel is the adsorption method because it reduces the levels of FFA and minimizes sulfuric acid catalyst, which can interfere with the transesterification process. The best biodiesel processing method is the transesterification method with methanol as a solvent and a NaOH catalyst because it can obtain higher biodiesel yields, lower temperatures, does not require a lot of operating equipment, tends to have fewer side products, the time required is relatively short, materials can be recycled. Return is more economical, although it has a weakness in product separation. The best biodiesel purification method is the method of washing and then in the oven because it can provide a higher yield of biodiesel products, namely the yield of 98.42%. #### ACKNOWLEDGMENT The author would like to thank the author's parents, then the Faculty of Engineering, UPN Veteran Jawa Timur, who have helped the author during the research both morally and materially, then all those who have helped and welcomed the author with open arms, so that the study works fine. #### **CREDIT** **Erwan Adi Saputro:** Writing - Review & Editing, and Supervison. **Achmad Rizaldi:** Article collection, Writing - Original Draft. **Tahan Simamora:** Article collection, Writing - Original Draft. **Nove Kartika Erliyanti:** Conceptualization, Methodology, Formal Analysis. **Rachmad Ramadhan Yogaswara:** Conceptualization, Methodology, Formal Analysis. #### References - Kulkarni MG, Dalai AK. Waste cooking oil An economical source for biodiesel: A review. Industrial and Engineering Chemistry Research 2006;45(9):2901–2913. - 2. Darmanto S, Sigit I. Analisa Biodiesel Minyak Kelapa Sebagai Bahan Bakar Alternatif Minyak Diesel. Jurnal Traksi 2006;4(2):64–71. https://jurnal.unimus.ac.id/index.php/jtm/article/view/592 - 3. Putri SK, Supranto, Sudiyo R. Studi Proses Pembuatan Biodiesel dari Minyak Kelapa (Coconut Oil) dengan Bantuan Gelombang Ultrasonik. Jurnal Rekayasa Proses 2012;6(1):20–25. - Patil PD, Deng S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009;88(7):1302– 1306. - Adaileh WM, Alqdah KS. Performance of diesel engine fuelled by a biodiesel extracted from a waste cocking oil. Energy Procedia 2012;18:1317–1334. - Smith PC, Ngothai Y, Nguyen QD, O'Neill BK. Improving the low-temperature properties of biodiesel: Methods and consequences. Renewable Energy 2010;35(6):1145–1151. - 7. Affandi RDN, Aruan TR, Taslim, Iriany. Produksi Biodiesel dari Lemak Sapi dengan Proses Transesterifikasi dengan Katalis Basa NaOH. Jurnal Teknik Kimia USU 2013;2(1):1–6. - 8. Elfadina E. Analisa minyak goreng bekas sebagai biodiesel. Jurnal Teknik 2021;2(1):21–27. - Dewan Energi Nasional. Indonesia Energy Outlook 2019. Journal of Chemical Information and Modeling 2019;53:1689– 1699. - 10. Kementerian Pertanian Republik Indonesia. Buletin Konsumsi Pangan Semester 1 2021; 2021. - 11. Jackam JP, Pierce JM, Fahrenbruck FS, Patent U, editor, Production of Biodiesel and Glycerin from High Free Fatty Acid Feedstocks. US Patent; 2004. https://patentimages.storage.googleapis.com/fc/8f/07/4d921b4aea11b7/US7806945.pdf - 12. Zhang Y, Dubé MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 2003;89:1–16. - 13. Gashaw A, Teshita A. Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy 2014;3:92–98. - 14. Kementerian ESDM Indonesia. Standart Mutu Biofuel; 2019. - 15. Nugraha OS, Taharuddin D. Pembuatan Biodiesel Dari Minyak Kelapa (Coconut Oil) dengan Metanol Sebagai Pelarut dan Reaktan Menggunakan Ekstraktor-Transesterifikator. Jurnal Rekayasa Produk dan Proses Kimia 2015 7;1:11–14. http://journal.eng.unila.ac.id/index.php/jrpdpk/article/view/280. Arita S, Dara MB, Irawan J. Pembuatan Metil Ester Asam Lemak Dari Cpo Off Grade Dengan Metode Esterifikasi-Transesterifikasi. Jurnal Teknik Kimia 2008;15:34 –43. - 17. Rachmaniah O, Baidawi A, Latif I. Produksi Biodiesel Berkemurnian Tinggi Dari Crude Palm Oil (Cpo) Dengan Tertrahidrofuran-Fast Single-Phase Process. Jurnal Reaktor 2009;12:166-174. - 18. Padil P, Wahyuningsih S, Awaluddin A. Pembuatan Biodiesel dari Minyak Kelapa melalui Reaksi Metanolisis Menggunakan Katalis CaCO3 yang dipijarkan. Jurnal Natur Indonesia 2012;13:27–32. - 19. Hidayanti N, Arifah N, Jazilah R, Suryanto A, Mahfud. Produksi Biodiesel Dari Minyak Kelapa Dengan Katalis Basa Melalui Proses Transesterifikasi Menggunakan Gelombang Mikro (Microwave). Jurnal Teknik Kimia 2015;10:13–18. - Ristianingsih Y, Hidayah N, Sari FW. Pembuatan Biodiesel dari Crude Palm Oil (CPO) Sebagai Bahan Bakar Alternatif Melalui Proses Transesterifikasi Langsung. Jurnal Teknologi Agro-Industri 2016;2:38–46. - 21. Sari SP, Tambunan AH, dan P Lilik EkoNugroho, dan Pangan PSMTMP, Bogor IP. Penggunaan Pengaduk Statik untuk Pengurangan Kebutuhan Katalis dalam Produksi Biodiesel. Jurnal Teknologi Industri Pertanian 2016;26:236–245. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/15703 - Kusyanto K, Hasmara PA. Pemanfaatan Abu Sekam Padi menjadi Katalis Heterogen dalam Pembuatan Biodiesel dari Minyak Sawit. Journal Of Tropical Pharmacy And Chemistry 2017 6;4:14–21. - Hazzamy MA, Zahrina I, Yelmida. Pembuatan Biofuel dari Minyak Goreng Bekas Melalui Proses Catalytic Cracking dengan Katalis Fly Ash. Jurnal Teknik 2013;4:1–5. - 24. Buchori L, Diponegoro U, Widayat W, Diponegoro U. Pembuatan Biodiesel Dari Minyak Goreng Bekas Dengan Proses Catalytic Cracking. Teknik 2012;28:83–92. - Kartika Sari Dwi Udyani; Matrika M. Uji Kemampuan Adsorpsi Zeolit Alam Teraktivasi Asam Sulfat pada Penurunan Bilangan Asam Biodiesel. Jurnal Teknik Kimia 2018;2:141–145,. - Suriaini N, Febriana TT, Yulanda A, Adisalamun A, Syamsuddin Y, Supardan MD. Proses Dry Washing Biodiesel Dari Minyak Jelantah Menggunakan Bentonit. In: Seminar Nasional Hasil Riset dan Standardisasi Industri VI; 2016. p. 220–227. - 27. Resti DA, Zibbeni A. Pengaruh Stir Washing Bubble Washing dan Dry Washing Terhadap Kadar Metil Ester dalam Biodiesel dari Biji Nyamplung (Calophyllum Inophyllum); 2010, undergraduate final project report. - Arifin Z, Rudiyanto B, dan Yuana Susmiati. Produksi Biodiesel dari Minyak Jelantah Menggunakan Katalis Heterogen Cangkang Bekicot (Achatina Fulica) dengan Metode Pencucian Dry Washing. ROTOR 2016 11;9:100–104. https://jurnal.unej.ac.id/index.php/RTR/article/view/4744. - Widayat W, Suherman S. Biodiesel production from rubber seed oil via esterification process. International Journal of Renewable Energy Development 2012;1. - Istadi I, Mabruro U, Kalimantini BA, Buchori L, Anggoro DD. Reusability and stability tests of calcium oxide based catalyst (K2O/CaO-ZnO) for transesterification of soybean oil to biodiesel. In: Bulletin of Chemical Reaction Engineering & Catalysis, vol. 11; 2016. p. 34–39. - 31. Widayat, Satriadi H, Nafiega NF, Dipo R, Okvitarini, Alimin AJ, et al. Biodiesel production from multi feedstock as feed with direct ultrasound assisted. In: AIP Conference Proceedings, vol. 1699; 2015. p. 1–8. - 32. Joelianingsih J, Tambunan A, Nabetani H, Sagara Y, Abdullah K. Perkembangan Proses Pembuatan Biodiesel Sebagai Bahan Bakar Nabati (Bbn). Jurnal Keteknikan Pertanian 2006:20:205–216. **How to cite this article:** Saputro E.A., Rizaldi A., Simamora T., Erliyanti K.N., Yogaswara R.R. (2022), A Biodiesel Production Technology from Used Cooking Oil: A Review, *IPTEK The Journal of Technology and Science*, 33(1):59-71. # A BIODIESEL PRODUCTION TECHNOLOGY FROM USED COOKING OIL: A REVIEW | ORIGINA | ALITY REPORT | | | | |---------|---------------------------------------|-----------------------|-------------------|-----------------------| | SIMILA | 3%
ARITY INDEX | %
INTERNET SOURCES | %
PUBLICATIONS | 13%
STUDENT PAPERS | | PRIMAR | RY SOURCES | | | | | 1 | Submitte
Student Paper | ed to Sriwijaya l | Jniversity | 1 % | | 2 | Submitte
Student Paper | ed to Universita | s Diponegoro | 1 % | | 3 | Submitte
Student Paper | ed to Universita | s Jember | 1 % | | 4 | Submitte
Student Paper | ed to Universiti | Kebangsaan N | Malaysia 1 % | | 5 | Submitte
Student Paper | ed to Universiti | Teknologi Peti | ronas 1 % | | 6 | Submitte
Student Paper | ed to iGroup | | 1 % | | 7 | Submitte
Student Paper | ed to Universita | s Brawijaya | 1 % | | 8 | Submitte
Malaysia
Student Paper | | nal Islamic Un | iversity 1 % | Submitted to University of Durham | 9 | Student Paper | <1% | |----|--|-----| | 10 | Submitted to Caledonian College of Engineering Student Paper | <1% | | 11 | Submitted to Durban University of Technology Student Paper | <1% | | 12 | Submitted to Central Queensland University Student Paper | <1% | | 13 | Submitted to Universiti Malaysia Pahang Student Paper | <1% | | 14 | Submitted to Wageningen University Student Paper | <1% | | 15 | Submitted to poltera Student Paper | <1% | | 16 | Submitted to University of New South Wales Student Paper | <1% | | 17 | Submitted to Universitas Riau Student Paper | <1% | | 18 | Submitted to University of Melbourne Student Paper | <1% | | 19 | Submitted to Politeknik Negeri Sriwijaya Student Paper | <1% | | 20 | Submitted to VIT University Student Paper | <1% | |----|--|-----| | 21 | Submitted to Vaal University of Technology Student Paper | <1% | | 22 | Submitted to Cypress Fairbanks Independent
School District
Student Paper | <1% | | 23 | Submitted to Sogang University Student Paper | <1% | | 24 | Submitted to Universiti Tenaga Nasional Student Paper | <1% | | | | | Exclude quotes Off Exclude bibliography Off Exclude matches Off