KARAKTERISTIK FISIKOKIMIA CUKA BUAH KERSEN, BELIMBING DAN ANGGUR DENGAN PENAMBAHAN KONSENTRASI INOKULUM Acetobacter aceti

by Dedin Finatsiyatull Rosida

Submission date: 05-Jan-2023 10:31AM (UTC+0700)

Submission ID: 1988713373

File name: jurnal_1_fitri_dedin.pdf (855.11K)

Word count: 6569

Character count: 40105

KARAKTERISTIK FISIKOKIMIA CUKA BUAH KERSEN, BELIMBING DAN ANGGUR DENGAN PENAMBAHAN KONSENTRASI INOKULUM Acetobacter aceti

PHYSICOCHEMICAL CHARACTERISTICS OF KERSEN, STARFRUIT AND GRAPES FOR FRUIT VINEGAR WITH A CONCENTRATIONS ACETOBACTER ACETI

miri Idayanti¹ dan Dedin Finatsiyatull Rosida²

^{1,2}Fakultas Teknik, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya Jl. Raya Rungkut Madya, Gunung Anyar Surabaya Jawa Timur 60294 E-mail: dedin.tp@upnjatim.ac.id

ARTICLE HISTORY: Received [26 October 2022] Revised [22 November 2022] Accepted [28 December 2022]

ABSTRAK

Cuka buah merupakan suatu kondimen yang terbuat dari bahan yang mengandung gula melalui proses fermentasi alkohol dan diikuti dengan fermentasi asam asetat. Prinsip dalam pembuatan cuka yaitu fermentasi alkohol dan fermentasi asam asetat. Penggunaan buah kersen, belimbing dan anggur dipilih karena berpotensi sebagai antioksidan diantaranya vitamin C, flavonoid, dan polifenol. Kriteria mutu cuka yang utama adalah kandungan asam asetat. Penelitian ini bertujuan untuk mengetahui pengaruh jenis buah dan snsentrasi inokulum Acetobacter aceti terhadap karakteristik cuka buah. Metode penelitian yang digunakan adalah rancangan acak lengkap (RAL) pola faktorial terdiri dari 2 faktor yaitu jenis bahan baku buah (buah kersen, belimbing manis dan anggur merah) dan konsentrasi Acetobacter aceti (10%, 15%, 20%). Dengan perlakuan terbaik ialah cuka buah perlakuan belimbing manis dengan konsentrasi Acetobacter aceti 15% dengan karakteristik kadar asam asetat 4,56%, pH 3,30, total padatan terlarut 3,10°Brix, total gula 0,76% dan kadar alkohol 2,04%.

Kata kunci: Cuka; Acetobbacter aceti; Kersen; Belimbing; Anggur

ABSTRACT

Vinegar is a condiment made from sugar-containing materials through an alcoholic fermentation process followed by acetic acid fermentation. The principle in making vinegar is alcoholic fermentation and acetic acid fermentation. The use of kersen, starfruit dan grapes was chose because of its potential antioxidants vitamin C, flavonoids and polyphenols. The main quality criterion for vinegar is the acetic acid content. The purpose the determine the effect of the type fruit and concentration inoculum Acetobacter aceti on fruit vinegar characteristics. This study used a completely randomized design (CRD) two factors, type furit (kersen, starfuit and grapes) and concentration inoculum Acetobacter aceti (10%, 15%, 20%). The best treatment was the fruit vinegar with treatment starfruit and concentration inoculum Acetobacter aceti 15%, with the characteristic acetic acid content of 4.56%, pH 3.30, total soluble solids 3,10(°Brix), total sugar 0.76%. and alcohol content 2,04%.

Keywords: Vinegar; Acetobbacter aceti; Kersen; Star Fruit; Grapes

PENDAHULUAN

Saat ini perubahan gaya hidup pada masyarakat terjadi sebagai akibat dari pemahaman (kesadaran) masyarakat akan pentingnya kesehatan. Salah contohnya yaitu berubahnya pola makan, yang mana masyarakat sekarang lebih memberikan pilihan untuk makan makanan yang alami serta sehat dan mempunyai gizi. Makanan tersebut memiliki fungsi sebagai pencegah meupun pengobatan suatu penyakit. Hal ini sudah memberikan tempat produk pangan fungsional sebagai trend peroduk pangan era ini serta memberikan dorongan beraneka ragam industri, dapat industri pangan ataupun industri farmasi menuju pada sebuah konsep yaitu "Healthy, Functional and Satisfied Foods" untuk memproduksi berbagai produknya (Hariyadi, 2010).

Suatu produk pangan yang secara fungsional mendapati perkembangan berkelanjutan atau terus menerus merupakan produk pangan yang memiliki kandungan kaya akan antioksidan. Hal ini dikarenakan memiliki kaitan yang sangat erat dengan fungsi antioksida yang berperan untuk melakukan pemeliharaan serta sebagai penjaga kesehatan (Miller et al., 2000). Cuka buah merupakan salah satu contohnya. Cuka buah sebagai produk pangan yang diperoleh atau diproduksi dari proses fermentasi. Cuka terbuat dari bahan yang memiliki kandungan pati atau gula. Cuka bisa digunakan sebagai pangan yang mempunyai banyak fungsi. Kondisi ini disebabkan karena mempunyai cuka mempunyai efek-efek pada kesehatan, seperti sebagai antioksidan yang bisa membantu menurunkan kadar glukosa darah (Hardoko, 2019), menurunkan berat badan Rui Yan *et al* (2020) dan menurunkan kadar kolestrol (Mariana *et al.*, 2020).

Kersen (Muntingia calabura L.) sebagai sebuah tanaman yang terkandung antioksidan didalamnya serta memiliki kandungan bioaktif yang kaya. Terdapat kandungan vitamin C pada buah kersen. Jumlah vitamin C yang ada di dalam buah tersebut adalah sebesar 379,75 mg, banyaknya vitamin C ini 3x lebih banyak daripada buah mengkudu yang mempunyai kandungan vitamin C sebesar 175 mg (Preethi et al., 2012). Sari polifenol yang dihasilkan dari ekstraksi buah kersen membuktikan bahwasanya buah kersen mempunyai kandungan antioksidan. Antioksidan yang terkandung dalam buah tersebut antara lain yaitu Vitamin C, Vitamin E, total fenol, flavonoid serta antosianin. Besarnya jumlah antioksidan tersebut adalah sebagai berikut yaitu sebanyak 333,6 mg AAE/g ekstrak vitamin C, sebanyak 14,7 mg TE/g ekstrak Vitamin E, kandungan total fenol sebanyak 121,1

mg GAE/g ekstrak, kandungan flavonoid sebanyak 173,2 mg RE/g ekstrak serta kandungan antosianin sebanyak 82,4 mg CGE/g ekstrak (Septiani dkk, 2013). Tanaman kersen juga berpotensi sebagai antimikroba, antioksidan dan antiinflamasi. Dalam aktivitas antiinflamasi senyawa bioaktif seperti flavons, flavonols dan terpenoid pada buah kersen dapat menghambat ekspresi COX lipopolisakarida serta yang bertanggung jawab pada terjadinya inflamasi (Gomathi, Anusuya, & Manian, 2013).

Tanaman-tanaman yang lain juga berpotensi untuk dijadikan sebagai cuka buah. Sebagai contohnya adalah buah belimbing dan buah anggur. belimbing (Averrhoa carambola L.)mengandung nutrisi dan komponen aktif seperti antioksidan yang tinggi. Menurut (Yan et al., 2013), kandungan total fenol pada buah belimbing sebesar 131 mg GAE/ 100g, vitamin C 5,2 mg/100g lebih tinggi dibandingkan dengan buah pisang dengan total fenol 51 mg GAE/ 100g serta vitamin C 4,9 mg/100g. Vitamin C yang terkandung di dalam buah belimbing mempunyai manfaat sebagai antioksidan. Fungsi dari antioksidan tersebut yaitu berfungsi sebagai penangkal radikal bebas dan menangkal menyebarnya sel-sel kanker, memberikan peningkatan daya tubuh tahan serta bisa menangkal sariawan. Berdasarkan penelitian (Panjaitan, 2014) menunjukkan bahwa belimbing mempunyai potensi bagi kesehatan sebagai diuretik dan antihipertensi.

Anggur (Vitis vinifera L) diketahui mempunyai kandungan gizi yang lumayan lengkap. Kandungan tersebut antara lain adalah karbohidrat, Vitamin A, Vitamin B1, Vitamin B2, serta Vitamin C, serat, fosfor serta kalsium. Xia et al., (2010) memberikan pernyataan bahwasanya pada 100 gram buah anggur terkandung vitamin C dengan jumlah yang mempunyai kisaran 3,20 mg. Berdasarkan penelitian (Gu et al., 2004) memberikan hasil dalam 100 gram kadar anggur mempunyai proanthocyanidin sekitar 48,7 hingga 73,3 mg serta dalam 100 gram biji anggur kadar proanthocyanidinnya 3426,5 3638,1 mg. Proanthocyanidin mempunyai fungsi sebagai pelindung tubuh terhadap penuaan dini, penyakit serta hilangnya kekuatan (Shi fisik. etal., 2003) menyatakan bahwa proanthocyanidin ternyata mempunyai kemampuan antioksidan yang tinggi apabila dibandingkan dengan vitamin E dan vitamin C. Tak hanya aktivitas antioksidan, sudah banyak ditemukan bahwasanya proanthocyanidin juga telah mempunyai aktivitas anti-kanker, antialergi, kardioprotektif, serta antiinflamasi (Bagchi et al., 2000).

Induk cuka yang ditambahkan juga akan memberikan pengaruh pada kadar asam asetat yang akan diperoleh. Menurut (Dessi dkk, 2008) bahwa jumlah starter campuran Acetobacter Aceti pasteurianus serta acetobacter aceti JCM 7640 1:2 sebanyak 20%, yang ditambahkan pada proses fermentasi asam asetat pada apel manalagi serta Rhome Beauty memberi kenaikan dari padahari ke 7 dengan total asam asetat yang paling tinggi sebesar 3,11%. Total asam asetat yang paling tinggi tersebut didapatkan dari apel Rhome Beauty.

Hasil penelitian yang sudah dilakukan oleh (Nurismanto dkk, 2014) yaitu perlakuan pada kombinasi yang ditambahkan inokulum Saccharomyces cerevisiae serta inokulum Acetobacter aceti, penambahan diberikan sebanyak 15%, dimana waktu fermentasi alcohol yaitu sepanjang 10 hari serta 16 hari digunakan sebagai waktu fermentasi asam asetat dapat memberikan hasil cuka pisang kepok. Konsentrasi asam total dari cuka pisang kepok tersebut yaitu 4,325%. Proses fermentasi alcohol dilakukan pada keadaan anaerob.

Berdasarkan berbagai hal diatas, penelitian ini dilakukan dengan tujuan untuk mengetahui pengaruh jenis buah serta konsentrasi inokulum Acetobacter aceti terhadap karakteristik terbaik cuka buah.

METODE

Bahan dan Alat

Buah kersen, belimbing serta anggur merupakan buah yang dipakai sebagai bahan yang digunakan dalam penelitian. Buah tersebut diperoleh dari Surabaya Utara, Jawa Timur. Kultur Saccharomyces cerevisiae dan Acetobacter aceti yang didapatkan berasal Laboratorium Mikrobiologi Fakultas Sains dan Teknologi Universitas Airlangga, Surabaya. Terdapat beberapa reagen yangmana dipakai dalam penelitian. Reagen-reagen tersebut yaitu sebagai berikut natrium hidroksida, indikator fenolftalein, indikator anthrone, asam sulfat, kalsium karbonat, kalium dikromat, kalium karbonat, alkohol absolut, dan aquadest.

Peralatan yang dipakai pada penelitian yang dilakukan diantaranya adalah sebagai berikut analitik, gelas arloji, kain saring, inkubator, blender, kertas saring, gelas ukur, labu erlenmeyer, pipet volume, pipet tetes, vortex, refraktometer, pH meter, spektrofotometer, dan beaker glass.

Waktu dan Tempat Penelitian

Tempat pelaksanaan penelitian yang dilakukan yaitu di Laboratorium Analisa Pangan dan Teknologi Pengolahan Pangan Universitas Pembangunan Nasional "Veteran" Jawa Timur. Waktu pelaksanaan penelitian yaitu dilakukan dalam waktu 3 bulan.

Metode Penelitian

Penelitian yang dilakukan memakai Rancangan Acak Lengkap (RAL), dengan memakai 2 faktor. Faktor tersebut yaitu jenis buah dan konsentrasi inokulum Acetobacter aceti. Faktor jenis buah mencakup 3 taraf. 3 taraf tersebut adalah A1 (buah kersen), A2 (belimbing), serta A3 (anggur). Faktor kedua konsentrasi inokulum Acetobacter Aceti 3 taraf. 3 taraf tersebut adalah B1 (10%) B2 (15%), B3 (20%).Pelaksanaan penelitian dilaksanakan dengan melakukan pengulangan sebanyak 2 kali, dengan demikian akan diperoleh 18 unit percobaan.

Prosedur Penelitian

Cuka buah dibuat dengan menggunakan bahan baku. Bahan baku yang dipakai dalam produksi cuka buah yakni buah kersen, belimbing dan anggur dipisahkan dari pengotor dan ditimbang. telah ditimbang dicuci Buah yang menggunakan air mengalir, kemudian dimasukkan blender dilakukan penambahan air, jumlah air yang ditambahkan yaitu dengan perbandingan 1:2 (b/v). Bubur buah selanjutnya

dilakukan penyaringan. Penyaringan dilakukan dengan memakai kain saring serta didapatkan filtratnya. Kemudian diberikan tambahan sukrosa 10% (b/v) dan diamonium hidrogen fosfat 0,2% (b/v) pada filtrat buah lalu divortex. Kemudian dilakukan analisa total gula, TPT, pH, total asam. Tahap selanjutnya yaitu pasteurisasi. Pasteurisasi dilakukan pada sari buah dengan memakai suhu 65°C. Lamanya pasteurisasi yaitu dalam waktu 15 menit. Tujuan dari pasteurisasi ini yaitu untuk mematikan mikroba awal. Tahap selanjutnya kemudian dimasukkan kedalam botol yang dipakai untuk proses fermentasi.

Selanjutnya filtrat sari buah diberi penambahan starter Saccharomyces Jumlah cereviciae. starter yang ditambahkan yaitu sebanyak 10% (v/v). Selanjutnya dilakukan fermentasi dalam waktu 10 hari pada suhu kamar pada keadaan anaerob, dengan demikian akan menghasilkan alkohol. Sari buah setelah difermentasi selama 10 hari dianalisa kadar alkoholnya. Kemudian dilakukan pasteurisasi. Pasteurisasi sari buah yang terkandung alkohol didalamnya dengan memakai suhu 65°C. Durasi pasteurisasi yaitu 15 menit. Pasteurisasi dilakukan sebagai bentuk upaya agar fermentasi alcohol berhenti.

Setelah dilakukan pendinginan cuka buah beralkohol kemudian

ditambahkan inokulum Acetobacter aceti. Banyaknya inoculum yang ditambah yaitu sebanyak 10%, 15%, dan 20% (v/v). Selanjutnya fermentasi asam dilakukan di suhu kamar pada keadaan aerob dalam waktu 7 hari. Hasil fermentasi berupa filtrat cuka buah kemudian dilakukan pasteurisasi. Digunakan suhu 65°C untuk proses pasteurisasi serta durasi proses tersebut adalah dalam waktu 30 menit, hal ini berfungsi agar fermentasi asam asetat berhenti. Cuka buah yang diperoleh dikemas menggunakan botol pengemasan bertujuan untuk kaca. meminimalisir terjadinya kontaminasi produk. Cuka buah yang diperoleh kemudian dilakukan analisa. Berikut adalah analisa-analisa yang dilaksanakan yaitu meliputi analisa total gula, total padatan terlarut, pH, total asam serta kadar alkohol.

Pengujian Kadar Asam Asetat Metode Titrasi (AOAC, 1995)

Pengambilan sampel dilaksanakan dengan mengambil sejumlah 10 mL. Sampel tersebut kemudian dimasukkan pada labu takar 100 ml. aquadest ditambahkan pada labu takar yang digunakan tersebut sampai tanda batas dilakukan kemudian penghomogenan. Kemudian dilakukan pengambilan sampel pada labu takar dengan jumlah 10 ml. sampel yang sudah diambil selanjutnya

dituangkan pada bagian dalam Erlenmeyer. 3 tetes indikator pp 1% ditambahkan pada Erlenmeyer tersebut kemudian dilakukan titrasi dengan larutan NaOH 0,1N. Titrasi dihentikan ketika sudah terbentuk warna merah muda.

Perhitungan:

ml NaOH x N NaOH x BM Asetat V Sampel x 100%

Pengujian Tingkat Keasaman dengan pH meter (AOAC, 1995)

Sebelum digunakan terlebih dahulu pH meter dilakukan pengkalibrasian. Larutan buffer pH 4 serta 7 dipakai untuk pengkalibrasian alat. Kemudian elektroda dilakukan pembilasan. Pembilasan dilakukan dengan menggunakan aquadest serta dilakukan pengeringan menggunakan tisu. Pengukuran sampel diimplementasikan dengan pengambilan sebanyak 20 ml sampel, tahap berikutnya yaitu elektroda dilakukan pencelupan ke dalam sampel. Elektroda kemudian didiamkan terendam selama waktu tertentu. Nilai pH yang sudah tidak berubah (stabil) merupakan nilai pH yang terbaca.

Pengujian Total Padatan Terlarut Menggunakan Refractometer (Wahyudi dan Dewi, 2017)

Sebelum digunakan terlebuh dahulu dilakukan pembilasan prisma

Pembilasan dilakukan refractometer. dengan menggunakan aquadest. Kemudian prisma refractometer dilakukan penyekaan dengan menggunakan kain yang lembut/halus. Dilakukan penetesan sampel ke bagian atas prisma refractometer. Refraktometer diarahkan ke sumber cahaya dan dilakukan pengukuran ^oBrix sampel.

Pengujian Total Gula Metode *Anthrone* (Apriyantono dkk, 1988)

1. Pembuatan Pereaksi Anthrone

Anthrone 1% dalam H2SO4 pekat dibuat dengan dengan cara berikut. 100 mg anthrone dilarutkan kedalam asam sulfat sampai volumenya mencapai 100 mL. Selanjutnya dilakukan pembuatan larutan glukosa standar 1000 ppm. Pembuatan larutan ini dilakukan dengan cara melakukan penimbangan 50 mg glukosa. Glukosa tersebut kemudian dilakukan pengenceran dalam labu ukur 50 ml dengan memakai aquades hingga mencapai tanda batas dilakukan serta penghomogenan.

2. Penentuan Kurva Standar

Larutan blanko dipipet ke bagian dalam tabung reaksi. Jumlah larutan yang diambil yaitu sebanyak 0;0,2;0,4;0,6;0,8;1,0 ml larutan glukosa standar. Kemudian ditambahkan aquades hingga jumlah volume tiap-tiap tabung reaksi 1 ml. Pada tiap-tiap tabung reaksi

dilakukan penambahan 5 ml pereaksi anthrone. Tabung reaksi dilakukan penutupan dan dilakukan pengocokan. Selanjutnya dipanaskan dalam waterbath menggunakan air mendidih 100°C dalam waktu 12 menit. Segera didinginkan memakai air yang mengalir. Lakukan pemindahan pada kuvet dan lakukan pembacaan absorbansinya. Panjang gelombang yang digunakan yaitu 630 nm. Kemudia buatlah kurva hubungan antara mg glukosa dengan absorbansi, mg gluksa dijadikan sebagai sumbu x serta absorbansi dijadikan sebagai sumbu y.

3. Persiapan Sampel

Dilakukan pengambilan sampel dengan jumlah sampel yang diambil yaitu sebanyak 5 ml. Lalu dituangkan pada labu ukur 100 ml. Kemudian dilakukan penambahan aquadest hingga mencapai tanda batas serta dilakukan penghomogenan. Larutan tersebut kemudian dimasukkan ke dalam Erlenmeyer 250 ml serta dilakukan penambahan CaCO3 sebanyak 1 gram, kemudian dilakukan pengadukan dan penutupan plastic. Langkah selanjutnya yaitu dilakukan pemanasan. Pemanasan dilakukan dengan memakai suhu 100°C dengan durasi waktu yang dipakai yaitu dalam waktu 30 menit serta didinginkan. Apabila masih ada endapan, maka diperlukan penyaringan sampel kembali dengan memberikan penambahan 2 ml Pbasetat, selanjutnya dilakukan penambahan 1 gram Na-oksalat yang berperan untuk mengendapkan Pb, selanjutnya dilakukan penyaringan kembali. Filtrat telah siap untuk digunakan

4. Penentuan Sampel

Ambil 1 ml sampel (sampel berasal dari persiapan sampel). Sampel yang sudah diambil kemudian dimasukkan dalam tabung reaksi. Selanjutnya dilakukan penambahan 5 ml pereaksi anthrone. Bagi sampel yang terlarut pekat wajib dilakukan pengenceran terlebih dahulu. Pengenceran dilaksanakan dengan melakukan pengambilan sampel dengan jumlah 1 ml sampel kemudian endapkan dalam 9 ml aquades. Tutuo dengan menggunakan Kemudian plastik. lakukan penghomogenan serta panaskan dalam waktu 12 menit pada suhu 100°C. Segera lakukan pendinginan dengan memakai air yang mengalir. Lakukan pembacaan pada panjang gelombang 630 nm serta lakukan pencatatan hasil pembacaan. Tetapkan total gula yang ada didalam sampel. Total gula dapat dihitung dengan persamaan regresi linear. Persamaan tersebut mempunyai rumus sebagai berikut:

Total Gula
$$\% = \frac{X \times Fp \times V \ Sampel}{Berat \ Sampel} \times 100\%$$

Pengujian Kadar Alkohol (Frederick A. dan Joseph M, 2012).

1. Pembuatan Pereaksi

Pembuatan larutan K2CO3 Jenuh. Pembuatan larutan ini dilakukan dengan cara menimbang 465 gram kristal K2CO3. tersebut kemudian dilarutkan dengan menggunakan aquades sebanyak 300 mL. Selanjutnya dilakukan pengadukan dan pemanasan sampai mendidih. Dinginkan larutan, saring dan masukkan ke dalam botol. Selanjutnya yaitu pembuatan larutan K2CrO7. Pembuatan larutan ini dilakukan dengan menimbang 5,9 gram kristal K2CrO7. Kristal yang telah ditimbang tersebut kemudian dituangkan ke dalam labu ukur 100 ml. Dilakukan penambahan aquades hingga mencapai tanda batas. Penyimpanan larutan ini yaitu pada lemari es. Selanjutnya dilakukan pemindahan ke dalam labu ukur 1 L. Setelah dipindahkan dilakukan kemudian penambahan sebanyak 278 mL H2SO4, penambahan tersebut dilakukan dengan perlahan-lahan serta kemudian ditambah aquades hingga mencapai tanda batas. Langkah selanjutnya yaitu pembuatan larutan blanko. Pembuatan larutan ini dengan melakukan pengambilan larutan K2CO3 jenuh sebanyak 1 mL ditambah larutan K2CrO7 asam sebanyak 1 mL. campuran larutan tersebut kemudian dilakukan pengenceran dengan menggunakan aquades hingga 10 mL. Langkah selanjutnya yaitu pembuatan larutan standart. Pembuatan larutan ini yaitu dengan melakukan pengenceran alcohol absolut. Alcohol absolut ini diencerkan sampai didapatkan konsentrasi 0,025%, 0,050%, 0,075%, serta 0,1%. Disiapkan larutan sampel (cuplikan) sebanyak 1 mL. larutan ini kemudia dilakukan pengenceran dengan menggunakan aquadest pada labu ukur hingga mencapai tanda batas 100 mL.

Penentuan kadar alkohol cuplikan (sampel)

Ambil 1 mL larutan cuplikan dan 1 mL K2CO3 jenuh. Kedua larutan tersebut kemudian direaksikan di dalam unit Conway. Dalam unit tersebut pada bagian tengahnya telah memuat 1 mL K2CrO7 serta dilakukan penutupan yang rapat. Dalam waktu 1 hingga 2 jam cawan dilakukan inkubasi dalam suhu 40°C, selanjutnya akan tercipta larutan yang memiliki warna hijau serta mempunyai bau asetaldehid. Dilakukan pengenceran cuplikan dengan memakai aquadest hingga volumenya 10 mL. Larutan cuplikan dilakukan pengukuran absorbansi. Panjang gelombang yang dipakai yaitu 470 nm. Kandungan alkohol dalam cuplikan yang diperoleh pengukuran dari tersebut. kemudian dilakukan pendistribusian ke dalam persamaan Y = aX + b. Dengan

demikian kosentrasi alkohol yang ada dalam sampel dapat ditetapkan dengan rumus berikut ini:

Kadar alkohol (%) = $X fp. \rho C2H5OH$

HASIL DAN PEMBAHASAN Hasil Pengujian Bahan Baku Awal

Bahan baku awal yang dipakai sari buah buah kersen, buah belimbing dan buah anggur dan dengan perbandingan air 1:2. Hasil pengujian sari buah dapat ditunjukkan pada Tabel 1.

Didasarkan pada hasil pengujian yang terdapat dalam Tabel 1, dapat diketahui bahwa sari buah kersen memiliki niali pH lebih rendah (4,5) dibanding dengan sari buah belimbing (4,8) serta sari buah anggur (5,10). Hal ini diduga pada kondisi pH tersebut proses fermentasi alkohol oleh Saccharomyces cerevisiae masih mampu menghasilkan alkohol. Sebuah aspek mempunyai yang yang kepentingan perlu dilakukan perhatian ketika proses fermentasi adalah pH. pH memberikan pengaruh terhadap tumbuhnya khamir Saccharomyces cerevisiae. Menurut pern yataan Nerendranath and Ronan (2005), bahwa untuk pН optimum pertumbuhan Saccharomyces cerevisiae adalah pH 4-6.

Tabel 1. Hasil Pengujian Bahan Baku Awal

Parameter	Buah Kersen		Buah Belimbing		Buah Anggur	
1 ai ainetei	Analisa	Literatur	Analisa	Literatur	Analisa	Literatur
Asam Asetat	1,68 ±	-	1,44 ±	-	0,96 ±	-
(%)	0,085		0,085		0,085	
pН	$4,5 \pm$	-	$4.8 \pm$	-	$5,10 \pm$	-
-	0,000		0,141		0,071	
Total gula	15,82 ±	14,26 ^a	$8,74 \pm$	5,60b	8,11±	$7,90^{c}$
(%)	0,103		0,039		0,026	
TPT(°Brix)	8,70 ±	15,23 ^a	$7,35 \pm$	8,50 ^b	4,85±	$7,16^{c}$
` '	0,000		0,071		0,071	

Sumber: a(Gemilang, 2012), b(Narain, et al., 2001), c(Pereira, et al., 2016).

Berdasarkan hasil pengujian pada Tabel 1 diketahui nilai total padatan terlarut sari buah kersen mempunyai nilai total padatan terlarut tertinggi yakni sebesar 8,7°Brix dan diikuti oleh sari buah belimbing 7,35°Brix dan sari buah anggur 4,85°Brix. Seluruh hasil analisis total padatan terlarut lebih rendah dari literatur. Perbedaan hasil analisis dapat terjadi oleh beberapa faktor seperti perbedaan tempat tumbuh, keadaan iklim, cara pemeliharaan, umur tanaman, pemupukan, pengairan dan proses pendahuluan. Menurut Mashud dan Matana (2014), bahwa komposisi kimia suatu tanaman dapat dipengaruhi oleh beberapa faktor yaitu umur tanaman, keadaan tanah dan iklim.

Pada Tabel 1 dapat dilihat bahwasanya total gula buah kersen yaitu sebesar 15,82%, belimbing 8,74% dan anggur 8,11% masih rendah bila digunakan dalam fermentasi alkohol. Oleh

karena itu perlu adanya penambahan gula hingga kebutuhan gula tercukupi sebagai upaya yang berguna untuk pembentukan alkohol. Menurut (Daulay dan Rahman, 1992) bahwasanya asam asetat yang diproduksi dari sari buah butuh dilakukan pemekatan pada awalnya atau diberi penambahan gula hingga kandungan dari gulanya tercapai 10 hingga 25%. Sehingga dalam penelitian ini ditambahkan gula sebanyak 10% (b/v) kedalam sari buah untuk mencukupi pembentukan alkohol.

Hasil Pengujian Sari Buah Beralkohol

alkohol Proses fermentasi merupakan fermentasi awal dari proses fermentasi cuka buah. Pada Tabel 2. menunjukkan bahwa fermentasi alkohol berlangsung pada kondisi anaerob dan proses fermentasi dilakukan selama 10 dengan penambahan inokulum hari 10%. Saccharomyces cerevisiae

Tabel 2. Hasil Pengujian Sari Buah Kersen, Belimbing dan Anggur Beralkohol

Parameter	% Kadar Alkohol
Buah Kersen	$12,86 \pm 0,028$
Buah Belimbing	$11,65 \pm 0,071$
Buah Anggur	$10,04 \pm 0,014$


Berdasarkan hasil pengujian pada Tabel 2. diperoleh sari buah beralkohol pada sari buah kersen sebesar 12,86%, belimbing 11,65%, dan anggur yakni 10,04%. Sari buah kersen menghasilkan kadar alkohol yang lebih tinggi dan diikuti dengan buah belimbing dan angggur hal ini diduga karena sari buah kersen memiliki kandungan gula yang tertinggi. Hal ini bisa ditunjukkkan pada Tabel 1. dimana sari buah kersen memiliki kandungan gula yang tinggi yakni sebesar 15,82%. Gula dalam fermentasi alkohol akan diubah menjadi alkohol oleh Saccharomyces cerevisiae. Kandungan gula yang tinggi pada medium fermentasi akan memberikan akibat pada tingginya kadar alkohol yang diperoleh. Dalam proses fermentasi asam asetat, kadar alkohol mempunyai peranan yang penting. Hal ini dikarenakan alkohol tersebut

dipakai sebagai substrat awal. Menurut pernyataan yang dinyatakan oleh Haumasse (2009) bahwasanya terdapat konsentrasi yang optimum bakteri asam asetat dalam melaksanakan pengoksidasian alkohol membentuk asam asetat pada fermentasi asam asetat, 10 hingga 13% merupakan kadar alkohol yang optimum tersebut.

Hasil Pengujian Cuka Buah

1. Kadar Asam Asetat

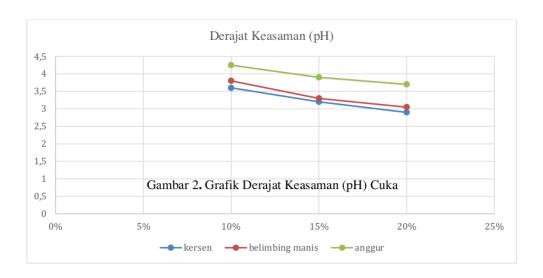
Cuka buah kersen, belimbing dan anggur yang dihasilkan mempunyai kadar asam asetat pada kisaran antara 4,08-5,40%. Jenis buah dan konsentrasi inokulum *Acetobacter aceti* mempunyai korelasi yang nyata pada nilai rata-rata kadar asam asetat (p<0,05). Hal ini bisa ditunjukkan pada **Gambar 1.**

Gambar 1. bahwa pada buah kersen dan dengan tingginya konsentrasi inokulum Acetobacter aceti, akan menghasilkan kadar asam asetat yang paling tinggi dan diikuti dengan buah belimbing dan anggur. Hal tersebut diduga disebabkan nilai kadar alkohol awal pada buah kersen yakni sebesar (12,86%) lebih tinggi dibandingkan buah belimbing (11,65%) dan anggur (10,04%) (Tabel 2). Asam asetat yang terdapat pada cuka berasal dari hasil oksidasi alkohol, sehingga semakin tinggi kadar alkohol akan mengakibatkan peningkatan kadar asam asetat yang diperoleh. Hal ini selaras dengan kadar alkohol sari buah kersen lebih tinggi dibandingkan dengan kadar alkohol sari buah belimbing manis dan anggur. Diduga semakin tinggi kadar alkohol dari sari buah maka asam asetat

yang diperoleh juga makin tinggi/banyak. Didasarkan pada (Pingkan, 2003) bahwa penambahan inoculum *Acetobacter aceti* 5% akan menghasilkan asam asetat yang rendah, dikarenakan jumlah mikroorganisme yang mempunyai peranan aktif pada fermentasi kurang dalam melkukan pengubahan substrat yang telah tersedia, dengan demikian laju pertumbuhan asam asetat menjadi kecil (rendah).

Dari hasil penelitian ini didapatkan kadar asam asetat tertinggi terdapat dalam cuka buah kersen. Cuka buah kersen dengan memakai konsentrasi *Acetobacter aceti* 20 % mampu menghasilkan konsentrasi asam asetat yang paling tinggi yaitu sebesar 5,40%. Hal tersebut diduga karena tingginya penambahan konsentrasi *Acetobacter* akan mengakibatkan

peningkatan kadar asam asetat. Acetobacter akan melakukan aceti perombakan alkohol untuk dijadikan atau membentuk asam asetat. Dengan demikian bisa memberikan peningkatan kadar asetat yang diperoleh. Keadaan tersebut selaras dengan penelitian yang sudah dilaksanakan oleh (Hardoyono, 2007) bahwasanya penambahan aspek konsentrasi starter bakteri Acetobacter akan aceti mengakibatkan kadar asetat asam meningkat, banyaknya penambahan starter bakteri Acetobacter aceti

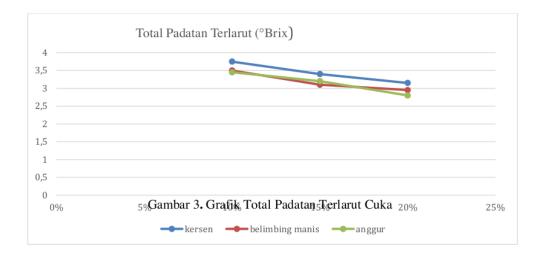

akan menyebabkan perombakan alkohol menjadi sangat banyak dengan demikian akan memperoleh asam asetat yang tinggi.

Afifah (2010) juga menambahkan bahwasanya khamir akan melakukan pemecahan gula (sukrosa). Pemecahan tersbut akan memperoleh glukosa serta fruktosa sewaktu aktivitas fermentasi

berlangsung. Metabolisme berlangsung dengan memakai glukosa dengan demikian akan diperoleh etanol dan karbondioksida. Hasil etanol yang diperoleh kemudian akan dilakukan pengoksidasian hingga memperoleh asam asetat. Oksidasi dilakukan oleh bakteri asam asetat. Dengan demikian makin tinggi etanol akan mengakibatkan asam asetat yang diperoleh juga akan semakin tinggi.

2. pH

Nilai pH cuka buah kersen, belimbing manis dan anggur merah yang dihasilkan berkisar antara 2,90-4,25. Jenis buah dan konsentrasi inokulum *Acetobacter Aceti* mempunyai korelasi yang nyata pada r nilai rata-rata pH (p<0,05) serta dapat dilihat pada **Gambar 2.**

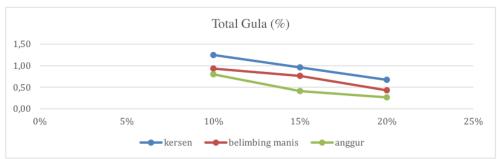

Gambar 2. bahwa pada buah anggur dan dengan semakin rendah konsentrasi i inokulum Acetobacter Aceti, maka menghasilkan tingkat keasaman (pH) tertinggi dan diikuti dengan buah buah belimbing manis dan kersen. Hal tersebut diduga karena pada fermentasi alkohol jumlah etanol yang didapatkan pada buah kersen lebih tinggi jika dibanding dengan buah belimbing serta anggur. Tingginya kadar alkohol tersebut dilakukan fermentasi oleh Acetobacter Aceti untuk dijadikan asam asetat. Dengan demikian asam asetat yang diperoleh juga akan meningkat. Asam asetat yang meningkat bisa mengakibatkan turunnya nilai dari pH. Hal ini seleras dengan pernyataan yang dinyatakan oleh (Naidu, bahwasanya asam asetat yang terlarut akan terpisah menjadi partikel, ion serta dan proton-proton bebas akan terlepas. Hal ini mengakibatkan larutan mempunyai nilai pH yang mempunyai kecenderungan turun.

Pada cuka buah anggur dengan konsentrasi Acetobacter aceti 10% memiliki nilai pH tertinggi, hal ini diduga disebabkan karena pembentukan asam asetat masih sedikit sedangkan pada cuka buah kersen dengan konsentrasi

Acetobacter aceti 20% diduga alkohol telah banyak dioksidasi menjadi asam asetat, dengan demikian dapat menurunkan nilai pH. Menurut pendapat yang dinyatakan oleh Wignyanto (2001)bahwasanya terjadinya perubahan nilai pH membuktikan terdapatnya alkohol yang dirombak untuk dijadikan asam asetat, perombakan ini mengakibatkan nilai pH mempunyai kecenderungan turun. Penyebab penurunan pH ini adalah dikarenakan oleh terlepasnya ion H+ dari asam asetat yang didapatkan selama proses fermentasi asam asetat. Penurunan nilai pH merupakan salah satu indikator bahwa adanya substrat alkohol yang dilakukan perombakan menjadi senyawa asam seperti asam asetat, dengan demikian dapat mengakibatkan nilai pH turun.

3. Total Padatan Terlarut

Cuka buah kersen, belimbing dan anggur yang dihasilkan mempunyai nilai total padatan terlarut berkisar antara 2,80-3,75(°Brix). Jenis buah serta konsentrasi inokulum *Acetobacter Aceti* mempunyai korelasi yang nyata pada nilai rata-rata total padatan terlarut (p<0,05) serta bisa ditunjukkan pada **Gambar 3.**


Didasarkan pada Gambar 3. yang ada diatas bisa ditunjukkan bahwasanya buah kersen mempunyai total padatan terlarut yang lebih tinggi, dan diikuti dengan buah belimbing dan anggur. Cuka buah mempunyai padatan terlarut yang semakin rendah seiring dengan tingginya tambahan konsentrasi inokulum Acetobacter Aceti yang ditambahkan. Kondisi tersebut diduga dikarenakan oleh dilakukannya tambahan Acetobacter Aceti yang semakin tinggi akan mengakibatkan banyaknya gula yang akan dioksidasi oleh Acetobacter aceti semakin meningkat sehingga pada akhir fermentasi asam asetat nilai total padatan terlarut menjadi turun. Kondisi ini sejalan dengan pernyataan yang dinyatakan oleh (Garner et al., 2006) gula merupakan padatan terlarut yang paling banyak dalam sari buah. Sewaktu fermentasi turunnya total padatan terlarut disebabkan oleh gula. Gula yang

merupakan sebagai total padatan terlarut yang paling banyak pada medium fermentasi dioksidasi oleh *Acetobacter acet*i membentuk asam asetat.

Dalam penelitian yang dilakukan, total padatan terlarut yang paling rendah didapatkan dari cuka buah anggur dengan konsentrasi inokulum Acetobacter aceti 20%. hal ini diduga karena sebagian gula yang tersisa setelah fermentasi alkohol dioksidasi oleh Acetobacter aceti sehingga kadar gula menurun menyebabkan nilai total padatan terlarut akhir cuka buah paling sedikit dibandingkan perlakuan yang lainnya. Total padatan terlarut yang paling tinggi didapatkan dari cuka buah dengan konsentrasi inokulum Acetobacter aceti 10% diduga karena total gula sari alkohol buah kersen paling tinggi dibandingkan sari alkohol buah belimbing dan anggur sehingga tidak banyak gula yang dioksidasi oleh Acetobacter aceti menyebabkan total padatan terlarut tetap tinggi. Menurut Steven (1985), semakin rendah total gula maka total padatan terlarut yang dihasilkan juga akan rendah. (Garner et al., 2006) juga menambahkan bahwa, selain gula padatan terlarut yang ada dalam sari buah adalah asam organik sehingga adanya asam organik yang dihasilkan pada cuka buah diduga ikut meningkatkan total padatan terlarut.

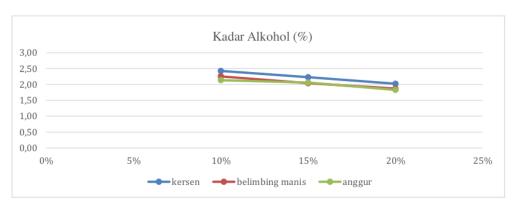
4. Total Gula

Total gula cuka buah kersen, belimbing dan anggur yang dihasilkan berkisar antara 0,27-1,25%. Jenis buah serta konsentrasi *Acetobacter acet*i mempunyai korelasi yangnyata pada nilai rata-rata total gula (p<0,05) serta bisa ditunjukkan pada **Gambar 4.**

Gambar 4. Grafik Total Gula Cuka

Gambar 4. menunjukkan bahwa pada buah kersen dengan semakin rendah konsentrasi inokulum Acetobacter aceti, maka menghasilkan total gula tertinggi sedangkan pada buah anggur dengan semakin tinggi konsentrasi inokulum Acetobacter aceti menghasilkan total gula terendah. Ha1 tersebut dikarenakan perbedaan total gula awal pada masingmasing buah, pada buah kersen lebih tinggi dibandingkan buah belimbing dan anggur. Total gula cenderung turun, hal ini dikarenakan sel khamir menjadikan gula yang ada pada media sebagai sumber

karbon yang dipakai oleh sel tersebut untuk melakukan sintesis energi melewati proses fermentasi alkohol (Putri, 2008).


Dalam penelitian ini total gula tertinggi pada buah kersen dengan konsentrasi inokulum Acetobacter aceti 10%, sedangkan total gula terendah pada pada buah anggur dengan konsentrasi inokulum Acetobacter aceti 20%. Hal ini diduga karena penambahan Acetobacter aceti yang makin tinggi mengakibatkan sebanyak-banyaknya gula yang dimanfaatkan oleh mikroba sehingga semakin banyak total gula yang berkurang.

Penurunan total gula pada setiap perlakuan memberikan penjelasan bahwasanya Acetobacter aceti memerlukan gula untuk dijadikan sebagai sumber karbon. Dengan demikian seiring bertambahnya konsentrasi inokulum Acetobacter aceti maka total gula mengalami penurunan.

Menurut (Zannoni, 2004) bahwa spesies Acetobacter memiliki kemampuan untuk mengoksidasi alkohol yang tinggi namun kemampuannya untuk mengoksidasi gula atau gula-alkohol lebih rendah. Hidayati (2010)juga menambahkan bahwasanya sewaktu khamir fermentasi, akan melakukan pemecahan gula (sukrosa) untuk dijadikan sebagai glukosa dan fruktosa. Khamir menggunakan glukosa untuk mendapatkan etanol serta CO2. Selanjutnya dengan cara yang sempurna bakteri asam asetat akan melakukan oksidasi etonol untuk dijadikan asam asetat.

5. Kadar Alkohol

Kadar alkohol cuka buah kersen, belimbing dan anggur yang dihasilkan berkisar antara 1,83-2,43%. Jenis buah serta konsentrasi inokulum *Acetobacter aceti* mempunyai korelasi yang nyata pada nilai rata-rata kadar alkohol (p<0,05). Hal ini bisa ditunjukka pada **Gambar 5.**

Gambar 5. Grafik Kadar Alkohol

Gambar 5. menunjukkan bahwa pada buah kersen dan semakin rendah konsentrasi inokulum Acetobacter aceti, maka menghasilkan kadar alkohol tertinggi. Sementara konsentrasi inokulum Acetobacter aceti yang makin tinggi pada buah anggur menghasilkan kadar alkohol

yang paling rendah. Hal tersebut diduga karena sewaktu fermentasi asam asetat berlangsung, Acetobacter aceti melakukan oksidasi alkohol untuk dijadikan atau membentuk asam asetat. Dengan demikian penambahan konsentrasi inokulum Acetobacter aceti yang semakin tinggi

akan mengakibatkan berkurangnya kadar alkohol.

Menurut dkk, 2016) (Aldia Acetobacter aceti mempunyai peranan dalam melakukan perombakan alkohol untuk dijadikan asam asetat. Hal ini didukung oleh pernyataan yang diungkapkan oleh (Madigan, 2002) bahwa fermentasi, pada proses dilakuka perombakan glukosa untuk mendapatkan asam piruvat. Pada keadaan anaerob asam piruvat tersebut akan diuraikan oleh piruvat dekarboksilase untuk dijadikan asetaldehid. Kemudian alkohol mengubah asetaldehid dehydrogenase membentuk etanol serta karbondioksida (CO2). Alkohol yang didapatkan oleh bakteri Acetobacter diubah membentuk asetaldehid serta air. Asetaldehid tersebut yang kemudian akan diubah membentuk asam asetat.

KESIMPULAN

Jenis buah dan konsentrasi inokulum Acetobacter aceti mempunyai pengaruh terhadap hasil analisa tiap-tiap parameter. Perlakuan terbaik diperoleh pada ienis buah belimbing manis. Konsentrasi inokulum Acetobacter aceti yang ditambahkan sebanyak 15% dengan karakteristik kadar asam asetat 4,56%, pH 3,30, total padatan terlarut 3,10 (°Brix), total gula 0,76%, serta kadar alkohol 2,04%.

UCAPAN TERIMA KASIH

Ucapan terimakasih ditujukan pada seluruh pihak yang sudah memberikan kontribusi pada penelitian ini.

DAFTAR PUSTAKA

Abid, M., Saqib J., Bing H., Malik M H., Tao W., Shicheng L., Ammar 15 dan Xiaoxiong Z. (2014). Thermosonication as A Potential Quality Enhancement Technique of Apple Juice. *Journal Ultrasonics Sonochemistry*, 21: 984-990.

Afif, M. 2012. Senyawa Asam Asetat.

Angkasa. Bandung.

Afifah, N. 2010. Analisis Kondisi dan Potensi Lama Fermentasi Medium Kombucha (Teh, Kopi, Rosela) dalam Menghambat Pertumbuhan Bakteri Pathogen (Vibrio cholera dan Bacillus cereus). Skripsi. Universitas Islam Negeri. Malang.

Aldia Januaresti A, Ela Turmala S, Ds dan Yusmantaufik, Ds. 2016.Konsentrasi Pengaruh Inokulum Acetobacter Dan Aceti Lama Fermentasi Terhadap Karakteristik Vinegar Murbei (Morus Alba) Skripsi Thesis. Fakultas Teknik Unpas.

AOAC. 1995. Official Method of Analysis of AOAC International Sixteenth Edition 5th revision. Volume II. Edited by P. Cunniff. AOAC International. USA.

Apriyantono, A., D. Fardiaz, dan Puspitasari. 1988. Petunjuk Pangan dan Gizi. IPB. Bogor.

Aridona, P.M., N.M. Wartini dan I W. Arnata. (2015). Pengaruh Lama Fermentasi Alami Cairan Pulpa Hasil Samping Fermentasi Biji Kakao terhadap Rendemen dan Karakteristik Cuka Fermentasi. *Jurnal Rekayasa Dan Manajemen Agroindustri*. 3(3): 85-92.

Bagchi, D., Bagchi, M., Stohs, S.J., Das,

- D.K., Ray, S.D., Kuszynski., C.A., Joshi, S.S., and Pruess, H.G. 2000. Free Radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and Disease Prevention. *Toxicology* 148: 187–197.
- Daulay, D dan Rahman, A. 1992. Teknologi Sayuran dan Buah – Buahan. Institut Teknologi Pertanian. Bogor.
- Dersroiser, N.W. 2008. Teknologi Pengawetan Pangan. Universitas Indonesia. Press. Jakarta.
- Dessi, C. (2008). Pengaruh Varietas Apel Dan Campuran Bakteri Asam Asetat terhadap Proses Fermentasi Cider. *Agritech*. 28(2): 7(23)5.
- Frederick A. and Joseph M. 2012.

 Laboratory Experiments for
 Introduction to General, Organic, and
 Biochemistry. Seventh Edition. Late
 of Adelphi University. United States
- Garner, D., Crisosto, C.H., Wiley, P., and Crisosto, G.M. 2004. Measurment of Soluble Solid Content.
- Gemilang, J. 2012. 1001 Aneka Buah dan Sejuta Khasiatnya Ampuh Mengatasi Beragam Penyakit. Penerbit Askara.
- 11 Yogyakarta
- Gomathi R, Anusuya N, dan Manian S. 2013. A dietary antioxidant supplementation of jamaican cherries (Muntingia calabura L.) Attenuates Inflammatory Related Disorders. Food Sci Biotechnol 22(3): 787-794.
- Hardoko, B., Sasmito dan N. Fitriani.
 (2020). Studi Aktivitas Antidiabet
 Cuka Buah Mangrove Pedada
 (Sonneratia Alba) Secara In Vivo.
 Journal Of Fisheries And Marine
 Research. 4(3): 399-407.
- Hariyadi, P. 2010. Penguatan Industri Penghasil Nilai Tambah Berbasis Potensi Lokal (Peranan Teknologi Pangan untuk Kemandirian Pangan). *Jurnal Pangan* . 19(4): 2010: 295-301.
- Hidayati, Ellya Khisti. 2010. Pengaruh Penambahan Ragi Roti Instan Dan Kondisi Fermentasi Alkohol (Aeron

- Dan Anaerob) Terhadap Produksi Alkohol Pada Pembuatan Cuka Apel. Skripsi. Fakultas Teknologi Pertanian, Universitas Brawijan. Malang.
- Madigan, M.T. 2002. Proses Pembuatan Kombucha Murbei Kajian Jenis Gula dan Lama Fermentasi. Skripsi. Fakultas Teknologi Pertanian, Universitas Brawijaya. Malang.
- Mariana, Α. Rahmadi H. (1₃1 Pengaruh Syahrumsyah. (2020).Pemberian Cuka Mandai Terhadap Kadar Kolesterol Total, Lipoprotein dan Trigliserida Pada Mencit (Mus Musculus) dengan Induksi Kuning Telur. Journal ofTropical Agrifood..2(1): 45-52.
- Mashud, N dan Matana, Y. 2014. Produktivitas Nira Beberapa Aksesi Kelapa Ganjah. B Palmia . 15(2): 110-114.
- Miller HE, F Rigelholf, L Marquart, A Prakash, M Kanter. (2000). Antioxidant content of whole grain breakfast cereals, fruits and vegetables. *Journal of The American College of Nutrition*. 19(3): 312S-319S.
- Naidu, A. S. 2000. Natural Food Antimirobial Systems. CRC Press. USA.
- Narain, N. PS. F4ra. HJ. Holschuh dan MA.DaS. Vasconcelos. (2001).
 Physical and chemical composition of carambola fruit (Averrhoa carambola L.) at three stages of maturity.
 Asociación de Licenciados en Ciencia y Tecnologia de lis Alimentos de Galicia. 3(3): 144-148.
- Nurismanto, R., T. Mulyani dan D.I.N.
 Tias. (2014). Pembuatan Asam Cuka
 Pisang Kepok (*Musaparadisiaca L.*)
 dengan Kajian Lama Fermentasi Dan
 Konsentrasi Inokulum
 (*Acetobacteracetii*). Jurnal
 Rekapangan. 822:149-155.
- Pingkan Aditiwati. 2003. Kultur Campuran dan Faktor Lingkungan Mikroorganisme yang Berperan dalam Fermentasi "Tea-Cider".

- Departemen Biologi. FMIPA ITB. Bandung.
- Preethi, K., P 18 Premasudha, and K. Keerthana. 2012. Anti-inflammatory activity of *Muntingia calabura* fruits. Pharmacognosy Journal. 4 (30): 51-
- Putri, A.I. 2008. Pengaruh media organik terhadap indeks mutu bibit cendana. Jurnal Pemuliaan Tanaman Hutan. 21(1): 1-8.
- Rauf dan Rusdin. 2015. Kimia Pangan. ANDI. Yogyakarta. 24
- Rui, Yuan and Jiaqi G. 2020. Schisandra Fruit Vinegar Lowers Lipid Profile in High-Fat Diet Rats. Research Article, Hindawi 2020 p(1-10). Evidence-Based Complementary and Alternative Medicine.
- Shi, J., Yu, J., Pohorly, J.E., and Kakuda,
 Y. 2003. Polyphenolics in grape seeds-biochemistry and functionality.
 J. Med. Food (6); p: 291-299.
- Wahyudi, A. dan R. Dewi. (2017). Upaya perbaikan kualitas dan produksi buah menggunakan teknologi budidaya sistem ToPAS pada 12 varietas

- semanga hibrida. *Jurnal Penelitian Pertanian*. 1(17): 17-25.
- Wignyanto, N.H. dan Wijaya, S. (2001).
 Peningkatan Efisiensi Produksi Asam
 Asetat Menggunakan Kolom
 Bertingkat. *Jurnal Universitas*B 10 vijaya. 7(2): 49 57.
- Xia, Q., Deng, G. F., Guo, Y. J. & Li, H. B. 2010. Biological Activities of Polyphenols from Grapes. *Int. J. Mol.* Sci. 11: 622-646.
- Yan, See Wan., Ramasamy, Rajesh., Alitheen, Noorja an Banu Mohamed., Rahmat, Asmah 2013. A Comparative Assessment of Nutritional Composition, Total Phenolic, Total Flavonoid, Antioxidant Capacity, and Antioxidant Vitamins of Two Types of Malaysian Underutilized Fruits. International Journal of Food Properties, 16(6):1231–124.
- Zubaidah, E. (2010). Kajian Perbedaan Fermentasi Alkohol Dan Konsentrasi Inokulum Pada Pembuatan Cuka Salak (*Salacca Zalacca*). *Jurnal Teknologi Pertanian*. 11(2): 94-100.

KARAKTERISTIK FISIKOKIMIA CUKA BUAH KERSEN, BELIMBING DAN ANGGUR DENGAN PENAMBAHAN KONSENTRASI INOKULUM Acetobacter aceti

INO	KULUM AC	etobacter aceti			
ORIGINA	ALITY REPORT				
SIMILA	0% ARITY INDEX	% INTERNET SOURCES	% PUBLICATIONS	10% STUDENT P	APERS
PRIMAR	Y SOURCES				
1	Submitte Student Paper	ed to Udayana l	Jniversity		2%
2	Submitte Student Paper	ed to Napier Un	iversity		1%
3		ed to Jabatan Pe ej Komuniti	endidikan Polit	eknik	1 %
4	Submitte Pakistan Student Paper	ed to Higher Ed	ucation Comm	ission	1 %
5	Submitte Student Paper	ed to UIN Syarif	Hidayatullah J	akarta	<1%
6	Submitte Student Paper	ed to Universita	s Brawijaya		<1%
7	Submitte Student Paper	ed to University	of Central Lar	ncashire	<1%
8	Submitte Student Paper	ed to Lambung	Mangkurat Ur	iversity	<1%

9	Submitted to Sriwijaya University Student Paper	<1%
10	Submitted to National Taiwan Ocean University Student Paper	<1%
11	Submitted to Universitas Airlangga Student Paper	<1%
12	Submitted to University of Cape Town Student Paper	<1%
13	Submitted to Universitas Mulawarman Student Paper	<1%
14	Submitted to LL Dikti IX Turnitin Consortium Student Paper	<1%
15	Submitted to King Mongkut's Institute of Technology Ladkrabang Student Paper	<1%
16	Submitted to Universitas Negeri Surabaya The State University of Surabaya Student Paper	<1%
17	Submitted to Universitas Kristen Satya Wacana Student Paper	<1%
18	Submitted to Angeles University Foundation Student Paper	<1%
19	Submitted to Anglia Ruskin University	

		• 70
20	Submitted to Universitas Muhammadiyah Sumatera Utara Student Paper	<1%
21	Submitted to Universitas Sam Ratulangi Student Paper	<1%
22	Submitted to Universitas Sebelas Maret Student Paper	<1%
23	Submitted to Chiang Mai University Student Paper	<1%
24	Submitted to Indiana University Student Paper	<1%
25	Submitted to Keimyung University	<1 04

Exclude quotes Off
Exclude bibliography Off

Student Paper

Exclude matches

Off