4.2.Modification of native and hydrolyzed tannia (Xanthosoma sagittifolium) starch by succinic acid (succinylation)

by Dedin Finatsiyatull Rosida

Submission date: 05-Jan-2021 10:55AM (UTC+0700)

Submission ID: 1483158704

File name: i_gizi_tepung_pra_masak_Pisang_Tanduk_dan_Pisang_Raja_Nangka.pdf (277.73K)

Word count: 3361

Character count: 19502

EVALUASI NILAI GIZI TEPUNG PRA-MASAK PISANG TANDUK DAN PISANG RAJA NANGKA

[Nutritional Evaluation of Pre-cooked "Tanduk" and "Raja Nangka" Plantain flour]

Rosida* dan Dedin Finatsiyatull Rosida

Departemen Teknologi Pangan Fakultas Teknologi Industri, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Diterima 18 Januari 2010 / Disetujui 10 Oktober 2011

ABSTRACT

This research dealt with the nutritional evaluation of pre-cooked plantain flour in experimental Wistar rats to evaluate physical and chemical properties of the digesta of rats as well as glucose and cholesterol content of their blood. Pre-cooked plantain flour was made of 2 types of plantain, Tanduk plantain (Musa corniculata) and Raja Nangka plantain (Musa paradisiacalLinn) which have been heated and cooled under 3 conditions (boiling-cooling, steaming-cooling, and baking-cooling, prior to drying and milling. It was found that both pre-cooked plantain flours have high resistant starch content (6.38-11.40%). Nutritional evaluation of rats for 20 days treatment revealed that pre-cooked plantain flour diets have no effect on the volume, weight, water content, and pH of the digesta and glucose content of the blood serum. But these diets increase the concentration of acetic acid, propionic acid and butyric acid of the digesta and decrease cholesterol content of the blood serum, especially Tanduk plantain pre-cooked flour made from Tanduk plantain after boiling and cooling, hence it has good effects on the colonic microbiota.

Key words: pre-cooked flour, resistant starch, Tanduk plantain, Raja Nangka plantain

PENDAHULUAN

Pada awal tahun 1980-an, telah ditemukan fraksi pati dalam diet yang lolos pada proses pencernaan dan absorpsi dalam usus halus manusia. Pati atau produk degradasi pati yang tidak dapat dicerna oleh usus manusia yang sehat ini telah didefinisikan sebagai pati resisten (*Resistant Starch*) (Asp, Bjorck, 1992). Pati resisten, selain mempunyai manfaat yang mirip seperti serat pangan, juga mempunyai kelebihan untuk mencegah kanker kolon dan diare, serta dapat meningkatkan mikroflora usus, sehubungan dengan tingginya kadar asam lemak rantai pendek (*Short-Chain Fatty Acid/SCFA*) yang merupakan produk akhir utama dari degradasi serat pangan dan pati resisten oleh bakteri anaerob pada usus besar (Cummings, 1989).

Menurut Cummings dan Bingham (1987), produk fermentasi serat pangan dan pati resisten berupa asam lemak rantai pendek dan gas-gas, yaitu CO₂, CH₄, dan H₂. Di antara SCFA yang dihasilkan, asam asetat, propionat, dan butirat merupakan SCFA yang dominan, sedangkan isobutirat, valerat, dan isovalerat kontribusinya sangat sedikit. Asam propionat mempunyai peranan yang penting dalam metabolisme karbohidrat dan lipid di dalam hati (Wolever, 1992 yang dikutip oleh Marsono, 1998), sedangkan asam butirat diduga dapat mencegah kanker kolon karena kemampuannya menekan pertumbuhan sel-sel yang abnormal (Kim et al., 1994 yang dikutip oleh Morita et al., 1999).

Di Indonesia penelitian 1 nendalam tentang pati resisten belum banyak dilakukan. Salah satu 1 umber pati resisten adalah pisang. Pisang mengandung pati cukup tinggi (28 - 29%) sehingga merupakan sumber pati resisten yang potensial. Hasil

penelitian sebelumnya menunjukkan bahwa perlakuan pemasakan yang dikombinasi pendinginan dapat meningkatkan kadar pati resisten pisang, terutama perlakuan perebusan-pendinginan, pengukusan-pendinginan, dan pemanggangan-pendinginan pada pisang Tanduk dan pisang Raja Nangka (Rosida, 2008).

Penelitian ini bertujuan untuk mengetahui pengaruh konsumsi tepung pra-masak dari perlakuan jenis pisang dan proses pengolahan terhadap sifat fisik dan kimia digesta, serta kadar glukosa dan kolesterol serum darah tikus percobaan.

METODOLOGI

Bahan dan alat

Bahan dasar dalam penelitian ini adalah pisang Tanduk (Musa corniculata) dan pisang Raja Nangka (Musa paradisiaca Linn) yang masing-masing berumur 3 bulan. Bahan-bahan kimia yang digunakan adalah KOH, Arsenomolibdat, Nelson A, Nelson B, Glukosa Standar, serta enzim amilase, amiloglukosidase, dan pullulanase yang diperoleh dari PT. 13 hi Agro Asia Corporindo, Tbk Pandaan. Hewan percobaan yang digunakan adalah tikus putih jantan jenis Wistar (umur 2 bulan dengan berat rata-rata 110 g), yang didapat dari LPPT Universitas Gadjah Mada (UGM), Yogyakarta. Bahan-bahan untuk pakan tikus, glukosa kit (Bavaria Diagnostic Germany), dan cholesterol kit (DiaSys Diagnostic System GmBH & Co, Jerian).

Peralatan yang digunakan dalam penelitian ini adalah panci perebus, dandang, (8)n, alat pemanggang, wajan, kompor, loyang, refrigerator, timbangan analitik, sentrifuse, kuvet, pH meter, vortex, spektrofotometer, dan alat-alat gelas untuk analisis kimia. Peralatan yang digunakan untuk bioassay adalah kandang tikus dan perlengkapannya.

Email:rosidaftiupnjatim@yahoo.com

^{*}Korespondensi Penulis:

Penelitian ini menggunakan metode rancangan acak kelompok (RAK) pola faktorial terdiri atas dua faktor dan lima ulangan. Faktor I adalah jenis pisang, yaitu pisang Tanduk dan pisang Raja Nangka, dan Faktor II adalah jenis pengolahan (B), yaitu perebusan-pendinginan, pengukusan-pendinginan, dan pemanggangan-pendinginan. Pada data kelompok tikus kontrol tidak dilakukan analisis statistik namun hanya digunakan sebagai pembanding saja.

Pelaksanaan penelitian

Pada tahap awal penelitian dilakukan pembuatan tepung pra-masak pisang Tanduk dan Raja Nangka Terlakuan pengolahan pisang meliputi : (1) perebusan (suhu 100°C selama 15 menit) dan pendinginan (suhu 15°C selama 24 jam), (2) pengukusan (suhu 100°C selama 15 menit) dan pendinginan dengan oven (suhu 100°C selama 15 menit) dan pendinginan, kemudian masing-masing perlakuan dilanjutkan pengeringan (suhu 60°C selama 6 jam), penggilingan dan pengayakan (100 mesh) sehingga diperoleh tepung pisang pramasak. Pada tepung pra-masak dilakukan analisis kadar pati resisten (Metode multi-enzym Englyst, Cummings, 1987) untuk mengetahui pengaruh proses pengolahan pada pembentukan pati resisten.

Diet perlakuan dibuat dari tepung pra-masak pisang dari 2 jenis pisang dan 3 jenis pengolahan sehingga diperoleh 6 macam diet perlakuan, yaitu diet pisang Tanduk setelah perebusan-pendinginan (TRD), pengukusan-pendinginan (TKD), dan pemanggangan-pendinginan (TPD), serta diet pisang Raja Nangka setelah perebusan-pendinginan (NRD), pengukusan-pendinginan (NKD), dan pemanggangan-pendinginan (NPD)

yang disajikan pada Tabel 1. Pada kelompok tikus kontrol digunakan diet standar yang mengacu pada formula diet American Istitute of Nutrition (AIN-93) (Reeves et al., 1993). Sebanyak 35 ekor tikus putih jantan jenis Wistar (umur 2 bulan, berat rata-rata 110 g) diadaptasi selama 7 hari dengan cara menempatkan setiap tikus secara individu dalam kandang yang cukup cahaya, ventilasi, dan pada suhu kamar. Selama adaptasi, tikus diberi diet standar (AIN-93) dan minum. Kemudian tikus-tikus tersebut dibagi menjadi 6 (enam) kelompok sesuai perlakuan, yang masing-masing terdiri atas 5 ekor tikus. Kelompok tikus standar juga terdiri atas 5 ekor tikus. Diet perlakuan, diet standar, dan air minum diberikan ad libitum selama 20 hari.

Pada hari ke-21 dilakukan pembedahan pada semua tikus untuk pengambilan digesta yang ada di *caecum* untuk dianalisis berat, volume, kadar air, pH, dan kadar asam lemak rantai pendeknya (SCFA) dengan kromatografi gas (Cummings, 1989).

Pada tikus perlakuan dilakukan pengambilan serum darah untuk dianalisa kadar kolesterol dengan cholesterol kit (DiaSys Diagnostic System GmBH & Co, Jerman) dan glukosa dengan glucose kit (Bavaria Diagnostic Germany). Sebelum diambil darahnya, tikus dipuasakan terlebih dahulu selama 12 jam. Pengambilan darah dilakukan melalui *sinus orbitalis* (terletak di organ mata) sebanyak 1 ml dengan menggunakan *haematocrit* dan dimasukkan pada tabung appendorf. Darah disentrifuse untuk mendapatkan serum untuk analisis kadar glukosa (metode GOD-PAP) dan kadar kolesterol total (metode *Enzymatic Colorymetric Test/*CHOD-PAP).

Tabel 1. Komposisi diet tikus (g/1000 g)*

Komponen	Diet Kontrol	Diet TRD	Diet TKD	Diet TPD	Diet NRD	Diet NKD	Diet NPD
Maizena	620,70						
Tep.pra-masak TRD		620,70					
Tep.pra-masak TKD			620,70				
Tep.pra-masak TPD				620,70			
Tep.pra-masak NRD					620,70		
Tep.pra-masak NKD						620,70	
Tep.pra-masak NPD							620,70
Kasein	140	140	140	140	140	140	140
Sukrosa	100	100	100	100	100	100	100
Minyak Kedelai	40	40	40	40	40	40	40
Selulosa	50	50	50	50	50	50	50
Camp. Mineral	35	35	35	35	35	35	35
Camp. vitamin	10	10	10	10	10	10	10
Air	4,3	4,3	4,3	4,3	4,3	4,3	4,3
Total Energi (kkall100 g)	3038	3038	3038	3038	3038	3038	3038

Keterangan:

^{*}Isokalori dan Isoprotein

^{*}TRD (Tanduk rebus-dingin), TKD (Tanduk kukus-dingin), TPD (tanduk panggang-dingin), NRD (Raja Nangka rebus-dingin), NKD (raja Nangka kukus-dingin), NPD (raja nangka panggang-dingin)

^{*}Campuran mineral dan vitamin mengacu pada AIN-93 (Reeves et al., 1993)

HASIL DAN PEMBAHASAN

Komposisi kimia tepung pra-masak pisang

Hasil analisis kimia tepung pra-masak pisang Tanduk dan Raja Nangka dapat dilihat pada Tabel 2.

Tabel 2. Komposisi kimia Tepung Pra-masak Pisang

Komposisi (db)	Pisang Tanduk	Pisang Raja Nangka	
Air (%)	7,70	8,12	
Pati (%)	79,95	77,73	
Amilosa (%)	40,36	47,32	
Amilopektin (%)	39,59	30,41	
Pati Resisten (%)			
- direbus & didinginkan	11,44°	9,33 b	
- dikukus & didinginkan	7,02 ∘	10,73 ∘	
- dipanggang & didinginkan	9,43b	7,21 °	

Keterangan:

Nilai-nila 6ada kolom yang sama ditandai huruf yang berbeda berarti berbeda nyata (p≤0,05)

Hasil analisis ragam menunjukkan bahwa perlakuan jenis pisang dan jenis pengolahan berpengaruh nyata (p<0,05) pada kadar pati resisten tepung pra-masak yang dihasilkan.

Hasil penelitian menunjukkan bahwa pada pisang Tanduk, proses perebusan selama 30 menit dan pendinginan (selama 1 malam) lebih efektif dalam menghasilkan pati tergelatinisasi dan teretrogradasi yang menyebabkan tingginya kadar pati resisten (11,44%) (Tabel 2) dibandingkan proses pengukusan (7,02%) dan proses pemanggangan (9,43%).

Hal ini disebabkan pada proses pengukusan (selama 15 menit) yang menggunakan uap air dan proses pemanggangan dengan udara panas (oven) mengakibatkan proses gelatinisasi yang kurang sempurna, akibatnya pada saat pendinginan, proses retrogradasi juga kurang sempurna sehingga menghasilkan tepung dengan kadar pati resisten yang relatif lebih rendah.

Volume, berat, dan kadar air digesta tikus

Pada penelitian ini, diet perlakuan, diet standar, dan air minum diberikan <u>ad libitum</u> selama 20 hari. Rata-rata konsumsi pakan tikus 9,184g/hari dengan peningkatan berat badan rata-rata 13,51g pada semua kelompok tikus percobaan. Pengaruh pemberian diet tepung pra-masak ang pada volume, berat, dan kadar air digesta tikus disajikan pada Tabel 3. Hasil analisis ragam menunjukkan bahwa perlakuan jenis pisang dan jenis pengolahan tidak berpengaruh nyata (p>0,05) pada volume, berat, dan kadar air digesta tikus percobaan.

Dari Tabel 3 dapat dilihat bahwa tikus Wistar yang diberi diet tepung pra-masak pisang mempunyai volume digesta sekitar 1,92–2,06 ml, berat digesta sekitar 1,97–2,07 g dan kadar air digesta 76,64–86,46%. Sedangkan kontrol yang diberi diet standar (*standard-placebo*) mempunyai volume digesta 2,02 ml, berat digesta 1,82 g, dan kadar air digesta 81,75%. Secara umum diet tepung pra-masak menghasilkan berat dan kadar air yang relative tinggi dibandingkan diet standar, terutama pada tikus yang diberi diet Tanduk rebus-dingin (TRD) dan Raja Nangka rebus-dingin (NRD) sehingga mempunyai efek yang positif pada kesehatan kolon.

Beberapa hasil penelitian menunjukkan bahwa pemberian diet tinggi pati resisten dapat meningkatkan berat digesta tikus

yang mengonsumsinya (Gee et al., 1991; Morrand et al., 1992; Schulz et al., 1993; Morita et al., 1998 dan 1999), meningkatkan kadar air digesta (Gee et al., 1991; Schulz et al., 1993), dan meningkatkan jumlah feses (Schulz et al., 1993).

Tabel 3. Volume, berat, dan kadar air digesta tikus yang mendapat 5 macam diet perlakuan dan diet standar

madam dide pondinadir dan dide didiradi						
Diet	Volume digesta (g)	Berat digesta (g)	Kadar air (%)			
TRD	2,06ª	2,07°	86,46 a			
TKD	2,00≈	2,01 a	84,08 a			
TPD	1,92ª	1,97°	84,07 a			
NRD	2,04≈	2,02 ≈	86,14 a			
NKD	1,96ª	2,00 a	84,32ª			
NPD	2,00≈	2,02 a	76,64 a			
Standar	2,02ª	1,82°	81,75 °			

Keterangan:

- Nilai rata-rata dari 5 ulangan
- TRD (Tanduk rebus-dingin), TKD (Tanduk kukus-dingin), TPD (tanduk panggang-dingin), NRD (Raja Nangka rebus-dingin), NKD (raja Nangka kukus-dingin), NPD (raja nangka panggang-dingin)
- Nilai-nilai pada kolom yang sama ditandai huruf yang berbeda berarti berbeda nyata (p≤0,05)

Asam lemak rantai pendek dan pH digesta tikus

Hasil analisis ragam menunjukkan bahwa perlakuan jenis pisang dan jenis pengolahan berpengaruh nyata (p<0,05) pada konsentrasi asam asetat, propionat, butirat dan total SCFA digesta, namun tidak berpengaruh nyata (p>0,05) pada pH digesta (Tabel 4).

Tabel 4. Konsentrasi asam asetat, propionat, butirat, total SCFA, dan pH digesta tikus yang mendapat 5 macam diet perlakuan dan diet standar

	Diet —		рН			
L	Diet	Asetat	Propionat	Butirat	Total	рп
	TRD	37,13a	18,87ª	9,16a	65,15a	6,32a
	TKD	35,05ab	16,06ab	8,58a	59,69₺	6,49ª
	TPD	33,91b	13,23°	7,05 ^{ab}	54,19°	6,78a
	NRD	35,23ab	15,56b	6,90 ^{ab}	57,69b	6,67ª
	NKD	31,39∞	11,62∞	6,39ab	49,40d	6,72a
	NPD	28,06°	12,63d	5,56b	43,26e	6,92ª
	Standar	11,59₫	8,42e	2,16∘	22,18	6,57a

Keterangan:

- Nilai rata-rata dari 5 ulangan
- TRD (Tanduk rebus-dingin), TKD (Tanduk kukus-dingin), TPD (tanduk Panggang-dingin), NRD (Raja Nangka rebus-dingin), NRD (raja Nangka kukus-dingin), NPD (raja nangka panggang-dingin)
- 7 ai-nilai pada kolom yang sama ditandai huruf yang berbeda berarti berbeda nyata (p≤0,05)

Hasil penelitian menunjukkan bahwa diet tepung pra-masak pisang Tanduk rebus-dingin (TRD) secara nyata memberikan konsentrasi asetat, propionat, dan butirat yang tinggi. Konsentrasi asetat dan propionat yang relatif tinggi lainnya dihasilkan pada tikus dengan diet tepung pra-masak Tanduk kukus-dingin (TKD) (35,05 dan 16,06 mmol/l) dan Raja Nangka rebus-dingin (NRD) (35,23 dan 15,56 mmol/l) sehingga baik untuk pencegahan hiperkolesterol dan diabetes. Pada tikus yang diberi diet standar (standard-placebo) mempunyai

konsentrasi asetat, propionat, butirat dan total SCFA digesta, masing-masing 11,59; 8,42; 2,16; dan 22,18 mmol/l. Hal ini menunjukkan konsumsi tepung pati resisten dapat meningkatkan konsentrasi SCFA dalam digesta sehingga baik untuk kesehatan kolon. Hasil penelitian ini sesuai dengan hasil penelitian Rosida (2001) dimana tikus yang diberi diet tepung pra-masak pisang Tanduk (setelah perebusan dan pendinginan mempunyai konsentrasi asetat, propionat, butirat dan total SCFA digesta, masing-masing 40,86; 14,52; 7,31; dan 62,69 mmol/l.

Menurut Alles et al. (1999), asetat dianggap memudahkan pengambilan glukosa ke dalam sel dengan menekan lipolisis dan menurunkan sejumlah asam lemak bebas di dalam serum, namun asetat mungkin berperan sebagai prekursor untuk sintesis kolesterol, sementara propionat mungkin menurunkan penggunaan asetat sebagai prekursor sintesis kolesterol. Dengan demikian asetat dan propionat mempunyai pengaruh yang berbeda pada metabolisme glukosa dan lemak. Asetat diduga dapat menurunkan glukosa dan meningkatkan konsentrasi kolesterol sedangkan propionat mungkin meningkatkan produksi glukosa dan menurunkan konsentrasi kolesterol.

Menurut Cummings dan Bingham (1987) asam butirat dapat mencegah kanker kolon karena kemampuannya menekan pertumbuhan sel-sel abnormal atau karena kemampuannya menghambat karsinogenesis. Pada penelitian ini, diet pisang Tanduk rebus-dingin (TRD) secara nyata memberikan konsentrasi butirat yang relatif tinggi (9,16%) sehingga baik untuk pencegahan penyakit kanker kolon.

Pada penelitian ini, tikus yang diberi diet tepung pra-masak pisang Tanduk (terutama TRD dan TKD) mempunyai pH 6,32 dan 6,49. Pada tikus yang diberi diet standar (standard-placebo) mempunyai pH 6,57. Hal ini menunjukkan bahwa konsumsi diet tepung pra-masak pisang Tanduk (terutama TRD dan TKD) mampu menurunkan pH digesta sehubungan dengan tingginya kadar asam lemak rantai pendek dalam digesta tikus.

Penurunan pH digesta disebabkan peningkatan komponen pati resisten yang tidak tercerna secara enzimatis sepanjang usus halus, sehingga akan lolos sampai ke *caecum*. Akibatnya terjadi peningkatan aktivitas mikroba yang ada didalam caecum untuk memproduksi SCFA, sehingga akan mempengaruhi pH cairan. Hal ini didukung oleh penelitian-penelitian sebelumnya yang menunjukkan bahwa pemberian diet kaya pati resisten akan menurunkan pH digesta tikus yang mengkonsumsinya dibandingkan tikus dengan diet rendah pati resisten (Gee *et al.*, 1991).

Kadar glukosa dan kolesterol serum darah tikus

Pada penelitian ini, analisis kadar glukosa dan kolesterol serum darah hanya dilakukan pada tikus perlakuan. Pengaruh pemberian diet tepung pra-masak sang pada volume, berat, dan kadar air digesta tikus disajikan pada Tabel 5. Hasil analisis ragam menunjukkan bahwa perlakuan jenis pisang dan jenis pengolahan tidak berpengaruh nanga (p>0,05) terhadap kadar glukosa serum darah, namun berpengaruh nyata (p<0,05) terhadap kadar kolesterol serum darah tikus.

Pada penelitian ini, tikus Wistar yang diberi diet tepung pramasak pisang Tanduk rebus-dingin (TRD) dan Raja Nangka rebus-dingin (NRD) mempunyai kadar glukosa lebih rendah dibandingkan diet lainnya.

Dari hasil analisa kadar kolesterol serum darah, tikus Wistar yang diberi diet tepung pra-masak pisang Tanduk rebus-dingin (TRD) dan Tanduk kukus-dingin (TKD) mempunyai kadar kolesterol lebih rendah, yaitu masing-masing 90,61 dan 91,31 mg/dl bila dibandingkan diet lainnya. Menurut Hardoko (2008) kadar kolesterol tikus normal adalah 140 mg/dl. Hal ini menunujukkan bahwa secara keseluruhan diet tepung pramasak pada penelitian ini lebih rendah dibandingkan kadar kolesterol tikus normal, sehingga konsumsi tepung ini mampu menurunkan kadar kolesetrol serum darah tikus.

Rendahnya kadar kolesterol dalam digesta disebabkan konsumsi tepung pra-masak tinggi pati resisten yang menghalangi absorbsi kolesterol dalam usus halus dan akibat konsentrasi propionat yang tinggi dalam digesta usus besar yang menyebabkan penurunan kadar kolesterol yang nyata dalam darah tikus.

Tabel 5. Kadar glukosa dan kolesterol serum darah tikus yang mendapat 5 macam diet perlakuan

Diet	Kadar Glukosa (mg/dl)	Kadar Kolesterol (mg/dl)		
TRD	71,03a	90,61∘		
TKD	73,44°	91,31°		
TPD	73,01a	98,72a		
NRD	70,99°	94,56b		
NKD	73,29a	99,99a		
NPD	73,37a	100,62ª		

Keterangan:

- Nilai rata-rata dari 5 ulangan
- TRD (Tanduk rebus-dingin), TKD (Tanduk kukus-dingin), TPD (tanduk Panggang-dingin), NRD (Raja Nangka rebus-dingin), NKD (raja Nangka kukus-dingin), NPD (raja nangka panggang-dingin)
- Nilai-nilai pada kolom yang sama ditandai huruf yang berbeda berarti berbeda nyata (p≤0,05)

KESIMPULAN

Pemberian diet tepung pra-masak pada tikus Wistar tidak berpengaruh nyata (p>0,05) terhadap volume, berat, kadar air, pH digesta, namun meningkatkan konsentrasi SCFA secara nyata. Analisis kadar glukosa dan kolesterol serum darah tikus yang diberi diet tepung pra-masak Tanduk dan Raja Nangka juga menunjukkan penurunan. Secara keseluruhan diet tepung pra-masak Tanduk rebus-dingin (TRD) dan Raja Nangka rebus-dingin (NRD) memberikan konsentrasi asetat, propionat, butirat, dan total SCFA digesta tikus yang relatif tinggi sehingga mempunyai efek yang positif pada kesehatan kolon.

UCAPAN TERIMAKASIH

Penulis mengucapkan terimakasih kepada Direktorat Jenderal Pendidikan Tinggi yang telah membiayai penelitian ini melalui Program Penelitian Hibah Bersaing tahun 2008-2009.

DAFTAR PUSTAKA

- Anonim. 2007. Pisang. <u>Http://id.Wikipedia.org/Wiki/Pisang.</u>
 [1 Sepanto 2007].
- Asp NG, Bjorck I. 1992. Resistant Starch. Review. In Trends in Food Science and Technology 3. Elsevier, London.
- Cummings JH. 1989. Metabolism of Dietary Fiber in the Large Intestine. Di dalam Cummings, JH 9ed). The Role of Dietary Fiber in Enternal Nutrition. Abbot International Ltd, USA.
- Cummings JH, Bingham SA. 1987. Dietary Fiber, Fermentation and Large Bowel Carger. Cancer Surveys 6:601-621.
- Englyst HN, Cummings.1987. Resistant Starch, a New Food Component: a Classification 12 Starch for Nutritional Purpose. In Morton, I.D. (ed.). Cereal in a Europian Context. First Europian Conference on Food Science and Technology, Ellis Horwood, Chicester p: 221-223.
- Hardoko. 2008. Pengaruh Konsumsi Gel dan Larutan Rumput Laut (eucheuma cottonii) Terhadap Hiperkolesterolemia Darah Tikus Wistar. J Teknol dan Industri Pangan 19(2): 97-103.
- Kingman SM, Englyst NH. 1994. The Influence of Food Preparation Methods on the *In Vitro* Digestibility of Starch in Potatoes. Food Chem 49: 181-186.
- Marsono Y. 1998. Perubahan Kadar Resistant Starch dan Komposisi Kimia Beberapa Bahan Pangan Kaya Karbohidrat Dalam Pengolahan. J Agritech 19(3): 124-127.

- Morita T, Kasaoka S, Hase K, Kiriyama S. 1999. Psyllium Shifts the Fermentation Site of High-Amylose Cornstarchtoward the Distal Colon and Increase Fecal Butyrate Concentration in Rats. J Nutr 129: 2081-2087.
- Muir JG, Lu XZ, Young PG, Smith CD, Collierr RG, O'Dea K. 1995. Resistant Starch in the Diet Increases Breath Hydrogen and Serum Acetate in Human Subjects. Am J Clin Nutr 61: 792 – 799.
- Reeves PG, Nielsen HF, Fahey CG Jr. 1993. AIN-93 Purified Diets for Laboratory Rodents. Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J Nutr 123: 1939-1951.
- Rosida. 2001. Tepung Pra-masak :Kandungan Pati Resisten, Sifat-sifat Digesta Tikus dan Sifat Organoleptik Crackers yang Dihasilkan. Tesis. Program Pasca Sarjana UGM, Yogyakarta.
- Rosida. 2005. Evaluasi Nilai Gizi Pati Resisten Pada produk Kerupuk Dari Berbagai Jenis Tepung. Laporan Hasil
 Penelitian Dosen Muda TA. 2005.
- Rosida. 2008. Evaluasi Nilai Gizi Pati Resisten Pisang (Kajian Varietas Pisang dan Proses Pengolahan). Laporan Hasil Penelitian Tahun Pertama Hibah Bersaing T/4 2008.
- Schulz AGM, Van Amelsvoortdan MMJ AC. Beynen. 1993.
 Dietary Native Resistant Starch but not Retrograded
 Resistant Starch Raises magnesium and Calcium
 Absorption in Rats. J Nutr 123: 1724-1731.

4.2. Modification of native and hydrolyzed tannia (Xanthosoma sagittifolium) starch by succinic acid (succinylation)

ORIGINA	ALITY REPORT			
	0% ARITY INDEX	% INTERNET SOURCES	% PUBLICATIONS	20% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	Submitte Student Paper	ed to Universitas	Sam Ratulangi	10%
2	Submitte Student Paper	d to Universitas	Brawijaya	2%
3		ed to Fakultas Eko as Gadjah Mada		nis 2%
4	Submitte Student Paper	ed to Universitas	Diponegoro	1%
5	Submitte Student Paper	ed to CSU, Long I	Beach	1%
6	Submitte Student Paper	d to Udayana Ur	niversity	1%
7	Submitte Student Paper	ed to Universitas	Sebelas Maret	1%
8	Submitte Student Paper	ed to Universitas	Andalas	1%

9	Submitt Student Pape	ed to University o	f New South V	Vales	<1%
10	Submitt Health Student Pape	ed to Endeavour	College of Nat	tural	<1%
11	Submitt Student Pape	ed to Korea Natio	nal Open Univ	versity	<1%
12	Submitt Student Pape		<1%		
13	Submitt Surakar Student Pape		Muhammadiy	ah	<1%
	de quotes	Off Off	Exclude matches	Off	
Exclud	de bibliography	Oll			