BAB V KESIMPULAN DAN SARAN

5.1. Kesimpulan

- Bangunan Pengolahan limbah IPAL di kawasan PIER ini menggunakan bangunan pengolahan yaitu: Sumur pengumpul, Saluran pembawa, Flotation tank, Grit chamber, screen, Primary settling tank, Activated sludge dengan menggunakan Oxidation ditch, Finally settling tank dan Sludge drying bed.
- 2. Pengolahan lumpur sisa dengan Sludge Drying Bed.
- Dari diagram alir bangunan yang dibuat, beberapa parameter dalam limbah IPAL PIER dapat diturunkan hingga memenuhi standart baku mutu yang ada.

Dari hasil perhitungan diperoleh kesimpulan sebagai berikut :

5.5.1. Persen Penyisihan Bangunan Pengolahan

Tabel 5.1 Persen Penyisihan Bangunan Pengolahan

Parameter Bangunan	BOD	COD	TSS	pН	Minyak dan lemak
Flotasi	-	-	1	7	99%
Grit Chamber	-	-	-	-	-
Bar Screen	-	1	-	1	-
Primary Settling tank	-	-	80%	-	-
Oxidation ditch	-	90%	90%	-	-

Finally Settling tank	-	50%	-	-	-

5.5.2. Hasil Effluent

Tabel 5.2 Hasil Effluent

No	Parameter	Satuan	BakuMutu	Effluent
1	BOD	Mg/lt	50	25
2	COD	Mg/lt	100	45
3	TSS	Mg/lt	200	55
4	pН		6 - 9	7
5	Minyak dan Lemak	Mg/lt	5	0.43

5.2. Saran

- 1. Dalam perencanaan bangunan pengolahan air buangan seharusnya memperhatikan Karakteristik air limbah dan besar debit air yang akan diolah sehingga bangunan yang akan dibuat mampu menurunkan pencemar secara optimal.
- Luas Area untuk yang tersedia untuk IPAL juga harus diperhatikan sehingga luas lahan mencukupi untuk pembangunan IPAL yang sudah direncanakan.
- 3. Dalam membuat unit pengolahan limbah sebaiknya menggunakan bangunan pengolahan limbah yang benar-benar diperlukan, tanpa mengurangi fungsi dari unit pengolahan tersebut dan bangunan pengolahan limbah dapat dikombinasi dengan bangunan pengolahan limbah lain sehingga fungsi penurunan limbah bertambah.

- 4. Pemilihan lokasi untuk peletakan bangunan bangunan yang telah direncanakan sangat penting.
- 5. Perlu adanya perencanaan beberapa tahun ke depan untuk mengantisipasi pengembangan industri yang akan mempengaruhi kapasitas bangunan pengolahan air buangan.
- 6. Pemilihan pengolahan biologi atau kimia yang lebih efektif agar didapatkan hasil seefisien mungkin.
- 7. Penggunaan lahan yang miring sebagai lokasi IPAL sangat mendukung dalam mengurangi pemakaian energi untuk pompa
- 8. Pemberian atap atau fiber glass pada unit pengolahan dapat bermanfaat ketika musim penghujan agar air limbah tidak tercampur dengan air hujan