Effect of the Optimized Temperature and pH Solution on the Crystallization of Struvite

Submission date: 13-Jun-2023 12:33PM (UTC+0700) Submission ID: 2115032711 File name: Effect_of_the_Optimized_Temperature_and_pH.pdf (906.62K) Word count: 2068 Character count: 10779

IOP Conference Series: Materials Science and Engineering

PAPER · OPEN ACCESS

Effect of the Optimized Temperature and pH Solution on the Crystallization of Struvite

1 To cite this article: D S Perwitasari *et al* 2021 *IOP Conf. Ser.: Mater. Sci. Eng.* **1125** 012091

View the article online for updates and enhancements.

You may also like

 Application of quantitative XRD on the 2 cipitation of struvite from Brine Water E Heraldy, F Rahmawati, Heryanto et al.

- <u>The Effect of Mixing Rate on Struvite</u> <u>Recovery from The Fertilizer Industry</u> Warmadewanthi, A Rodlia, N Ikhlas et al.

- Bench-Scale Demonstration and Thermodynamic Simulations of Electrochemical Nutrient Reduction in Wastewater via Recovery as Struvite Zineb Belarbi, Damilola A. Daramola and Jason P. Trembly

245th ECS Meeting San Francisco, CA

May 26–30, 2024

PRIME 2024

Honolulu, Hawaii October 6–11, 2024 Bringing together industry, researchers, and government across 50 symposia in electrochemistry and solid state science and technology

Learn more about ECS Meetings at http://www.electrochem.org/upcoming-meetings

Save the Dates for future ECS Meetings!

This content was downloaded from IP address 202.80.218.158 on 12/06/2023 at 03:23

Workshop on Environmental Science, Society, and Technology (WESTECH 2020)

IOP Conf. Series: Materials Science and Engineering

1125 (2021) 012091 doi:10.1088/1757-899X/1125/1/012091

Effect of the Optimized Temperature and pH Solution on the **Crystallization of Struvite**

D S Perwitasari^{1*}, S S Santi², A P Bayuseno³, J Jamari⁴ and S Muryanto⁵

^{1,2}Department of Chemical Engineering, Faculty of Engineering, UPN "Veteran" Jawa Timur, Surabaya Indonesia

^{3,4}Mechanical Enginering Graduate Program University, Tembalang Campus, Semarang Indonesia

⁵Department of Chemical Engineering UNTAG University, Bendhan Dhuwur Campus, Semarang, Indonesia

*E-mail: saridyah05@gmail.com

Abstract. A computational model was developed and applied to investigate struvite crystallization with design parameters of temperature 30, 35 and 40° C and pH solution. This study used visual MINTEQ to optimized the operating parameters for controlling crystallization of struvite by the addition of maleic acid in liquid waste. The results showed both struvite and struvite-K minerals were the main minerals that control recovery of Mg+2 NH_4^+ , and PO_4^{-3} ions. Ammonium (NH_4^+) removal was obtained of 55.938% at a temperature of 30° C and pH 9 so that it could be used as fertilizer and reduce the environmental impact. The identification of struvite crystals by the Rietveld XRPD method and irregular prismatic crystal morphology were shown in crystal struvite using SEM-EDX analysis.

Keywords: Maleic acid, Struvite, SEM-EDX, Temperature

1. Introduction

Temperature is one of the factors that can influence struvite crystallization and affect the solubility of struvite and crystal morphology. Struvite solubility products were determined by the radioisotope method, at temperatures between 10-50° C increased from 0.542.10⁻¹⁴ to 3.73.10⁻¹⁴ [1]. Burns and Finlayson obtained the same tendency for measurement of pH and concentration, with increasing solubility is from $0.7.10^{-14}$ to $1.45.10^{-14}$ at 25° C and 45° C [2]. Because its solubility is associated with crystance occur in supersaturated solutions, at high temperature the crystals are more difficult to settle. Struvite solubility increases in the temperature range 25-35° C and then decreases at 40° C [3]. Phosphate conversion rates and struvite solubility product values can be proposed using a thermodynamic indel based on numerical equilibrium predictions from the study system MgNH₄PO₄6H₂O in the temperature range of 15-35 °C [4]. Guangan J et al have applied struvite precipitation from anaerobic digester waste in the wastewater treatment plant, its systematic operation parameters can be optimized using Visual MINTEQ chemical-balance model [5]. Temperature can affect struvite crystallization, depending on the parameters chosen. Struvite crystallization can recover large amounts of ammonium from wastewater treatment [6],[3]. Struvite formation process is carried out by reacting Mg²⁺, NH⁴⁺, and PO4⁻³. Struvite is generally a white crystal and struvite crystallization has long been recognized as a fertilizer [6]. Carboxylic acids are weak organic acids and widely used as additives in the crystallization process. In previous studies three types of carboxylic acids (citric

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

1 Workshop on Environmental Science, Society, and Tech	mology (WESTECH 2020)	IOP Publishing
IOP Conf. Series: Materials Science and Engineering	1125 (2021) 012091	doi:10.1088/1757-899X/1125/1/012091

acid, maleic acid and tartaric acid) were used as additives in the process of crystallization of calcium sulfate at concentrations of 0 - 20 ppm. The experimental results show that at the same concentration (20 ppm) citric acid is better than the two other carboxylic acids (maleic acid and tartaric acid) as effective inhibitors of struvite crystal growth even with low molar concentrations [7]. As by done Prisciandaro and colleagues that with low concentrations, citric acid can slow the nucleation of calcium sulfate and its effect is very strong [8]. Previous studies have also shown that citric acid can significantly inhibit the growth of struvite crystals despite the low additive concentration namely at 200 rpm stirrer rotation round with a temperature of 30° C with a maximum growth rate inhibition of 77% [9]. Here, the growth rate of struvite crystals is affected by various parameters as temperature, pH, stirring speed, and additives [10], [11], [9]. Therefore in this research, parameter optimization is used that affects the crystallization process for chemical equilibrium reactions. The purpose of this study is to find an effective crystallization process by influencing temperature, pH of the solution, stirring speed, and additives to struvite crystals.

2. Research methods

2.1 Materials

Struvite crystallization was developed from mixed solutions of magnesium chloride hexahydrate and ammonium phosphate, which were supplied with analitycal grade of chemicals (MerckTM).

The solution water was prepared in a 500 ml for the mixing $MgCl_2.6H_2O$ and $NH_4H_2PO_4$. The maleic Acid was also used as additives, then each was pH adjusted to 9 by addition KOH. In this work, the effect of temperature 30, 35, and 40° C, maleic acid concentration 20 ppm, and stirring speed 300 rpm was evaluated. Each stock solution was then separated through a paper filter, and dried in a desiccator at room temperature.

2.2 Analitical methods

Struvite crystal characterization was performed by analyzing the crystal results obtained using the X-ray powder diffraction (XRPD) method to view the mineral phase and using a scanning electron microscope (SEM) equipped with EDX to view morphology and composition.

2.3 Thermodynamic model of chemical equilibrium

MINTEQ version 3.0 visual program is run to prediction of species for chemical composition of the solution [12]. The estimated composition in solution shown as this program (Table 1). Model prediction of species calculated using a pH value of 9 and a temperature of 30, 35, 40° C as input parameters and then confirmed use the Rietveld X-ray powder diffaction (XRPD) method.

No	Ions	molal
1.	Mg ²⁺	0,2040
2.	$NH4^+$	0,3418
3.	PO4 ⁻³	0,1829
ŀ.	K^+	0,2116
5.	Cl	0,0964

3. Results and Discussion

3.1 Modeling result

Mineral crystallization was calculated using the MINTEQ program with the values in Table 1. The chemical composition model was calculated in the program with the mineral speciation results listed in Table 2. During the crystallization process, Mg^{+2} , NH_4^+ , and PO_4^{-3} can form complex ions MgOH⁺, $MgCI^+$, $Mg(NH_3)_2^{+2}$, $MgPO_4^-$, $MgHPO_4$, KH_2PO_4 , KPO_4^{-2} , HPO_4^{-2} , $H_2PO_4^-$, $MgPO_4^-$, $MgHPO_4$, $KHPO_4^-$, K_2HPO_4 , K_2PO_4 , $Mg(NH_3)_2^{+2}$, NH_3 in the system. This complex ion is in accordance with the

1 Workshop on Environmental Science, Society, and Tech	nology (WESTECH 2020)	IOP Publishing
IOP Conf. Series: Materials Science and Engineering	1125 (2021) 012091	doi:10.1088/1757-899X/1125/1/012091

findings of previous studies [13]. Figure 1 shows mineral speciation results predicted by Visual MINTEQ calculation. The saturation index (SI) value is presented in this study to estimate the possibility of mineral speciation formation. Therefore for mineral growth and accumulation, positive SI values are needed. As can be seen, the optimized temperature at a specified temperature of 30° C has a positive SI value to obtain struvite **a** ystals. At pH 9, some crystals can form struvite-(K), struvite, MgH(PO₄)₃H₂O and Mg₃(PO₄)₂. The influence of temperature on formation of struvite minerals and there is not very visible. The crystals that are formed are affected by the pH of the solution, the concentration of magnesium and phosphate.

Component	Species name	% of total	% of total	% of total
		concentration	concentration	concentration
		$(30^{\circ}C)$	(35° C)	(40°C)
Mg ²⁺	Mg ²⁺	16,778	16,488	16,021
	$MgOH^+$	0,089	0,133	0,196
	MgCl ⁺	4,764	4,804	4,840
	$Mg(NH_3)_2^{+2}$	0,566	0,759	0,596
	$MgPO_4^-$	2,611	2,885	3,175
	MgHPO ₄ (aq)	75,192	74,932	74,632
PO_4^{-3}	KH ₂ PO ₄ (aq)	0,026	0,027	0,027
	KPO4 ⁻²	0,012	0,013	0,015
	HPO ₄ ⁻²	4,756	4,475	4,220
	H_2PO_4	0,066	0,061	0,056
	MgPO ₄ ⁻	2,912	3,217	3,540
	MgHPO ₄ (aq)	83,845	83,555	83,221
	KHPO ₄	6,418	6,628	6,838
	K ₂ HPO ₄ (aq)	1,951	2,009	2,066
	K_2PO_4	0,012	0,012	0,012
${\rm NH_4}^+$	$\mathrm{NH_4}^+$	55,875	47,479	39,498
	$Mg(NH_{3})_{2}^{+2}$	0,676	0,906	1,141
	NH ₃	43,449	51,614	59,360

Table 2. Model prediction of species for chemical composition of the solution

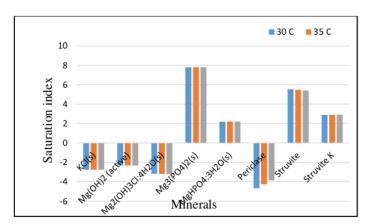


Figure-1. Mineral speciation results predicted by Visual MINTEQ calculation

Workshop on Environmental Science, Society, and Technology (WESTECH 2020) IOP Conf. Series: Materials Science and Engineering 1125 (2021) 012091 doi:10.1088/1757-899X/1125/1/012091

3.2 Mineralogical characterization

The results of the analysis of x-ray powder diffraction (XRPD) formed at temperature of 30 and 40° C. These results indicate that peaks of struvite and Struvite- (K) at low intensities were obtained at temperature 30 and 40° C and the mineral. can be formed at low concentrations. Furthermore, the comparison of the results of the analysis of phosphate / magnesium concentrations was confirmed using the visual MINTEQ program (Table 2).

IOP Publishing

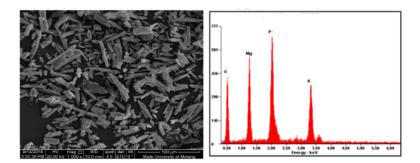


Figure-2. SEM and EDX spectrum at temperature 30° C

Struvite crystal formation at temperature 30°C was obtained using SEM-EDX analysis. Crystal morphology is irregular prismatic, gown as crystals with the addition of additives. The typical form of struvite crystals (Figure 2) [14]. The resulting bot struvite and struvite (K) structures can be seen from the presence of K, Mg, N, O, P ions, which are shown by the EDX spectrum in figure 2.

4. Conclusions

Visual MINTEQ was chosen to mineral speciation predicted in solution. Results showed both struvite and struvite-K minerals were the main minerals that control recovery of Mg⁺², NH₄⁺, and PO₄⁻³ ions. Ammonium (NH_4^+) removal was obtained of 55.938% at a temperature of 30° C and pH 9 so that it could be used as fertilizer and reduce the environmental impact. The identification of struvite crystals by the Rietveld XRPD method and irregular prismatic crystal morphology were shown in crystal struvite using SEM-EDX analysis.

5. References

- [1] Aage H K, Anderson B, Blom A Jensen L 1997 Journal of Radioanalytical and Nuclear Chemistry 223 1-2 p 213 - 215
- [2] Burns J R and Finlayson B 1982 The Journal of Urology 128 p 426 - 428
- Bhuiyan M I H, Mavini D S, Beckie R D 2007 Environmental Technology 28 p 1015 1026 [3]
- [4] Hanhoun M, Montastruc L, Azzaro-Pantel C 2011 Chemical Engineering Journal 167 (1) p 50 -58
- [5] Guangan J, Hu Zang, Joerg K, Tim M, Baoyu G, Nanwen Z, Bo Jin 2017 Journal of Cleaner Production 147 p 297 - 305
- [6] Doyle J D and Parsons S A 2002 Water Research 36 p 3925 - 3940.
- Rabizadeh Taher, Caroline L P and Liane G B 2014 Mineralogical Magazine 78 (6) p 1465 -[7] 1472
- [8] Prisciandaro M, Lancia A and Musmarra D 2003 Industrial & Engineering Chemistry Research 42 p 6647 - 6652
- [9] Perwitasari D S, Edahwati, Sutiyono, Muryanto S, Jamari J, Bayuseno A P 2017 Environmental Technology 38 (22) p 2844 - 2855
- [10] Moussa S B, Tlili M M 2011 Crystal Research Technology 46 3 p 255 260

 Workshop on Environmental Science, Society, and Technology (WESTECH 2020)
 IOP Publishing

 IOP Conf. Series: Materials Science and Engineering
 1125 (2021) 012091
 doi:10.1088/1757-899X/1125/1/012091

- [11] Muryanto S, Bayuseno A P 2014 Powder Technology 253 p 602 607
- [12] USEPA 1991 U.S.EPA.EPA/600/3-91/021 Washington (DC)
- [13] Bouropoulos Ch N, Koutsoukos P G 2000 Journal Crystal Growth 213 p 381 388
- [14] Le Corre K S, Valsami J E, Hobbs P, Parsons S A 2006b Submitted to: Water Research p 164 -179

Effect of the Optimized Temperature and pH Solution on the Crystallization of Struvite

ORIGINALITY REPORT

2	ALITY REPORT	20% INTERNET SOURCES	7% PUBLICATIONS	% STUDENT P/	APERS
PRIMAR	Y SOURCES				
1	WWW.res	searchgate.net			17%
2	Nurhazi treatme precipita method	adira Hurairah, rah Abdul Aziz. nt by using com ation and coagu s: RSM optimiza Earth and Enviro	"Stabilized lea nbination of st llation-floccula ation", IOP Cor	chate ruvite ition iference	4%
3	Muryan "Phosph crystals acid: mi	rwitasari, L. Eda to, J. Jamari, A. I nate recovery th precipitated in neralogical phas on", Environme	P. Bayuseno. Frough struvite the presence of se and morpho	e-family of citric ology	1 %
4	assessm thermod	n, M "Tempera nent on struvite dynamic modeli al Engineering Jo	solubility proo ng approach",		<1 %

Exclude bibliography On	Exclude quotes	On	Exclude matches	Off
	Exclude bibliography	On		