LAPORAN PENELITIAN

"PENGOLAHAN LIMBAH CAIR INDUSTRI KERUPUK UDANG SECARA BIOLOGI AEROB DENGAN TEKNOLOGI KONTAK STABILISASI (STUDI KASUS PT. CANDI JAYA AMERTA)"

DISUSUN OLEH:

TIUR LINA

NPM.19031010023

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNIK UPN "VETERAN" JAWA TIMUR SURABAYA 2021

PENELITIAN

KATA PENGANTAR

Puji syukur penyusun panjatkan kehadirat Tuhan Yang Maha Esa, atas segala rahmat dan hidayat-Nya sehingga penyusun dapat menyelesaikan Laporan Penelitian dengan judul "Pengolahan Air Limbah Industri Kerupuk Udang Secara Biologi Aerob Dengan Teknologi Kontak Stabilisasi (Studi Kasus PT. Candi Jaya Amerta)"

Dengan selesainya laporan penelitian ini, tak lupa penyusun mengucapkan terima kasih sebesar-besarnya kepada :

- 1. Ibu Dr. Dra. Jariyah, MP selaku Dekan Fakultas Teknik UPN "Veteran" Jawa Timur.
- 2. Ibu Dr. Ir. Sintha Soraya Santi, MT selaku Koordinator Program Studi Teknik Kimia UPN "Veteran" Jawa Timur.
- 3. Bapak Ir. Ketut Sumada, MS selaku Dosen Pembimbing Penelitian, yang telah membimbing dalam penelitian ini.
- 4. Ibu Dr. Ir. Srie Muljani, MT selaku dosen penguji yang telah bersedia memberikan masukkan dalam penelitian ini.
- 5. Ibu Ir. Caecilia Pujiastuti, MT selaku dosen penguji yang telah bersedia memberikan masukkan dalam penelitian ini.
- 6. PT. Candi Jaya Amerta, yang telah bersedia menyediakan tempat untuk pelaksanaan penelitian ini.
- 7. Kedua orang tua, yang telah memberikan restu dalam penyelesaian penelitian.
- 8. Semua pihak yang telah membantu selama proses penelitian hingga penyusunan laporan hasil penelitian ini.

Penyusun menyadari bahwa dalam laporan penelitian ini masih banyak terdapat kekurangan dan kelemahan, oleh sebab itu saran dan kritik yang bersifat membangun penyusun butuhkan demi perbaikan laporan ini.

Akhir kata, penyusun berharap semoga laporan penelitian ini dapat memberi manfaat bagi pihak yang berkepentingan, dan Tuhan Yang Maha Esa memberikan balasan kepada semua pihak yang telah memberikan bantuan kepada penyusun.

Sidoarjo, 29 September 2021

Penyusun

DAFTAR ISI

HALAMAN COVERLEMBAR PENGESAHAN	
KATA PENGANTAR	ii
DAFTAR ISI	iii
DAFTAR TABEL	v
DAFTAR GAMBAR	vi
BAB I PENDAHULUAN	1
I.1. Latar Belakang	1
I.2. Tujuan	3
I.3. Manfaat	3
BAB II TINJAUAN PUSTAKA	4
II.1. Teori Umum	4
II.1.1 Limbah Cair Industri	4
II.1.2 Karakteristik Limbah Cair Industri	4
II.1.3 Baku Mutu Limbah Cair Industri Kerupuk Udang	5
II.1.4 Proses Pengolahan Limbah	5
II.1.5 Mikroorganisme yang Terkandung dalam Limbah Cair	8
II.1.6. Mekanisme Perombakan Bahan Organik Oleh Mikroorganisme	10
II.1.7. Bakteri	11
II.1.8. Bakteri Anaerob	12
II.1.9. Bakteri Aerob	13
II.1.10. Bakteri Fakultatif dan Mikroaerofil	13
II.1.11. Sifat Bakteri Berdasarkan Kebutuhan Oksigen	14
II.1.12. Teknologi Pengolahan Limbah	15
II.2. Landasan Teori	22
II.2.1. Teknologi Kontak Stabilisasi	22
II.2.2. Faktor-Faktor yang Mempengaruhi Pengolahan Limbah Cair	23
BAB III METODE PENELITIAN	26
III.1. Waktu dan Tempat Penelitian	26
III.2. Bahan Penelitian	26
III.3. Alat Penelitian	26
III.4. Rangkaian Alat Penelitian	
III.5. Kondisi yang Dijalankan	27

III.6. Prosedur Penelitian	27
III.7. Diagram Alir Penelitian	29
III.8. Metode Analisis Penelitian	29
III.8.1. Mixed Liquor Suspended Solids (MLSS)	30
III.8.2. Volatile Suspended Solids (VSS)	30
III.8.3. Food - to - microorganism ratio atau Food – to - mass ratio	
DAD WHACH DAN DENDAMACAN	
BAB IV HASIL DAN PEMBAHASAN	
IV.1. Sumber Air Limbah di PT. Candi Jaya Amerta	
IV.2. Kualitas Air Limbah pada Setiap Sumber Air Limbah	35
IV.3. Kualitas Air Limbah Campuran	38
IV. 4. Pengaruh Laju Alir terhadap %Penurunan BOD dan COD	39
IV. 4. 1. Pengaruh Laju Alir terhadap %Penurunan BOD	39
IV. 4. 2. Pengaruh Laju Alir terhadap %Penurunan COD	40
IV. 5. Pengaruh Konsentrasi Mikroorganisme (mg/L) terhadap % BOD dan COD	
IV.5.1. Pengaruh Konsentrasi Mikroorganisme (mg/L) Terhadap % Kadar BOD	
IV.5. 2. Pengaruh Konsentrasi Mikroorganisme (mg/L) Terhadap % Kadar COD	
IV.6. Pengaruh Rasio F/M terhadap % Penurunan Kadar BOD da	n COD 44
BAB V KESIMPULAN DAN SARAN	46
V.1. Kesimpulan	46
V.2. Saran	47
DAFTAR PUSTAKA	48
APPENDIX	50
LAMPIRAN	56

DAFTAR TABEL

Tabel 1. Baku Mutu Air Limbah Industri Kerupuk Udang	5
Tabel 2. Rentang Proses Lumpur Aktif untuk Kontrol Rasio F/M	20
Tabel 3. Hasil Analisis Awal Air Limbah Bak Sump Pit A	36
Tabel 4. Hasil Analisis Awal Air Limbah Bak Sump Pit B	36
Tabel 5. Hasil Analisis Awal Air Limbah Bak Kontrol	37
Tabel 6 Hasil analisis awal limbah cair PT Candi Java Amerta	38

DAFTAR GAMBAR

Gambar 1.	Diagram Proses Pengolahan Teknologi Konvensional11
Gambar 2.	Skema pengolahan tangki kontak stabilisasi12
Gambar 3.	Sistem Aerasi Berlanjut
Gambar 4.	Diagram Proses Pengolahan Air Limbah dengan Sistem Oxidation
	Ditch12
Gambar 5. I	Diagram Proses Pengolahan Air Limbah dengan Sistem Step Aeration14
Gambar 6.	Diagram Proses Pengolahan Air Limbah dengan Sistem Modified
	Aeration
Gambar 7.	Diagram Proses Pengolahan Air Limbah dengan Sistem High Rate
	Activated Sludge
Gambar 8.	Diagram Proses Pengolahan Air Limbah dengan Sistem Pure
	Oxygen Aeration
Gambar 9.	Diagram Proses Pengolahan Air Limbah dengan Sistem Contact
	Stabilization
Gambar 10.	Rangkaian Alat Pengolahan Limbah Cair
Gambar 11.	Diagram Alir Proses Pengolahan Limbah Cair25
Gambar 12. l	Diagram kebutuhan air dan sumber limbah di PT. Candi Jaya Amerta32
Gambar 13.	Bak <i>Sump Pit</i> A
Gambar 14.	Dimensi Bak Sump Pit A
Gambar 15. l	Bak <i>Sump Pit B</i>
Gambar 16. 1	Dimensi Bak Sump Pit B34
Gambar 17.	Dimensi Bak Kontrol35
Gambar 18. l	Pengaruh Debit Limbah Masuk terhadap Penurunan Kadar BOD38
Gambar 19. l	Pengaruh Debit Limbah Masuk terhadap Penurunan Kadar COD39
Gambar 20.	Pengaruh Konsentrasi Mikroba di Tangki Kontak terhadap Penurunan
	Kadar BOD41
Gambar 21.	Pengaruh Konsentrasi Mikroba di Tangki Kontak terhadap Penurunan
	Kadar COD42
Gambar 22. l	Pengaruh Rasio F/M terhadap %Penurunan Kadar BOD dan COD43

PENGOLAHAN AIR LIMBAH INDUSTRI KERUPUK UDANG SECARA BIOLOGI AEROB DENGAN TEKNOLOGI KONTAK STABILISASI (STUDI KASUS PT. CANDI JAYA AMERTA)

Tiur Lina¹Cindy Saskia Damayanti¹¹Program Studi Teknik Kimia, Fakultas Teknik, UPN "Veteran" Jawa Timur,
Surabaya 60294

*Email: tiurlina565@gmail.com

ABSTRAK

Limbah cair adalah limbah yang dihasilkan dari proses industri yang berwujud cair dan mengandung padatan tersuspensi atau terlarut, akan mengalami proses perubahan fisik, kimia, maupun biologi yang menghasilkan zat beracun dan dapat menimbulkan gangguan ataupun resiko terjadinya penyakit dan kerusakan lingkungan. Limbah cair industri merupakan air sisa buangan yang berasal dari industri dan dihasilkan dari proses produksi. Pada proses produksi kerupuk akan dihasilkan air limbah yang berasal dari ruang steam, pencucian bahan baku, peralatan, sarana proses produksi, dan dari unit penyedia steam yang mempergunakan bahan bakar batubara sebagai sumber energi sehingga sudah sepatutnya perindustrian mengelola hasil buangannya sesuai kaidah pengolahan limbah secara terpadu, efisien, dan efektif. Kenaikan kualitas air limbah dan penurunan Chemical Oxygen Demand (COD) atau Biological Oxygen Demand (BOD) dapat dilakukan dengan pengontrolan pada F/M ratio yang belum optimal sehingga diketahui pengaruh debit dan jumlah mikroba terhadap kualitas air limbah serta dapat menemukan solusi untuk meningkatkan kualitas hasil pengolahan limbah cair industri kerupuk udang di PT. Candi Jaya Amerta. Dari penelitian didapatkan debit tertinggi 22000 L/hari dengan konsentrasi mikroba pada tangki equalisasi, kontak dan stabilisasi masing-masing 0,0132 gr/100 ml; 0,085 gr/100 ml; dan 0,3198 gr/100 ml. Sedangkan untuk debit terendah 11000 L/hari didapatkan konsentrasi mikroba pada tangki equalisasi, kontak dan stabilisasi masing-masing 0,2197 gr/100 ml; 0,2618 gr/100 ml; dan 0,2848 gr/100 ml . Didapatkan hubungan antara debit limbah cair dengan konsentrasi mikroba berbanding terbalik. Rasio F/M terkecil diperoleh debit 11000 L/hari dengan konsentrasi mikroba

pada tangki kontak sebesar didapatkan nilai F/M sebesar $0.1949 \frac{\frac{mg\ BOD}{mg\ MLSS}}{hari}$. Sedangkan

nilai F/M terbesar yaitu 1,6612 $\frac{\frac{mg\ BOD}{mg\ MLSS}}{hari}$ yang didapatkan pada debit 22000 L/hari. Pada

debit terbesar yaitu debit 24000 L/hari didapatkan rasio F/M sebesar 0,4867 $\frac{mg\ MLSS}{mari}$ dapat disimpulkan bahwa hubungan debit dan rasio F/M berbanding terbalik, dimana semakin kecil nilai F/M maka semakin efisien pengolahan yang terjadi. Berdasarkan penelitian yang telah dilakukan didapatkan hasil terbaik pada debit 20000 L/hari dengan nilai penurunan BOD dan COD yang besar masing- masing yaitu 95,675% dan 95,5325% serta dengan konsentrasi mikroba pada tangki kontak sebesar 1370,5 mg/L. Hal ini membuktikan bahwa pengolahan limbah cair di PT Candi Jaya Amerta telah memenuhi baku mutu.

Kata kunci: air limbah, aerobic, BOD, COD