MUDAH CEPAT TEPAT

DALAM APLIKASI **STRUCTURAL EQUATION MODELING**

(Edisi Revisi)

Dr. Minto Waluyo, Ir. M.M. Mohammad Rachman W, S.T, M.T.

MUDAH CEPAT TEPAT DALAM APLIKASI STRUCTURAL EQUATION MODELING (Edisi Revisi)

Penulis : Dr. Minto Waluyo, Ir. M.M.

Mohammad Rachman W, S.T, M.T.

ISBN : 978-623-7511-12-0

Copyright © Januari 2020

Ukuran: 15.5 cm X 23 cm; Hal: vi + 139

Hak Cipta dilindungi oleh undang-undang. Pertama kali diterbitkan di Indonesia dalam Bahasa Indonesia oleh **Literasi Nusantara**. Dilarang mengutip atau memperbanyak baik sebagian ataupun keseluruhan isi buku dengan cara apa pun tanpa izin tertulis dari penerbit.

Penata Sampul dan Isi : M. Rosyiful Aqli Editor : Nur Azizah Rahma

Cetakan I, Januari 2020

Diterbitkan pertama kali oleh **Literasi Nusantara**

Perum Paradiso Kav A1 Junrejo - Batu Telp: +6285887254603, +6285841411519 Email: penerbitlitnus@gmail.com Web: www.penerbitlitnus.co.id Anggota IKAPI No. 209/JTI/2018

Didistribusikan oleh CV. Literasi Nusantara Abadi

Jl. Sumedang No. 319, Cepokomulyo, Kepanjen, Malang. 65163

Telp: +6285234830895

Email: redaksiliterasinusantara@gmail.com

PENGANTAR

Prof. Dr. H. Soeparlan Pranoto, S.E., M.M., Ak., C.A.

Minto Waluyo adalah dosen UPN Veteran yang telah menulis buku SEM sebanyak enam jilid. Buku ini sangat terkenal di antara para peneliti S-1, S-2, dan S-3 yang menggunakan tool SEM dalam penelitiannya. Cara penyajian buku ini sederhana, komprehensif, terstruktur, dan mudah dimengerti. Buku Panduan dan Aplikasi Structural Equation Modeling pernah menjadi buku terlaris di pelbagai toko buku di

Surabaya. Kini, Minto Waluyo baru saja menyelesaikan buku referensinya yang berjudul *Mudah Cepat Tepat dalam Aplikasi SEM (Edisi Revisi)*.

Saya mencoba memberi semangat kepada Minto Waluyo agar yakin bahwa buku ini akan lebih sukses dari buku sebelumnya. Usaha yang dilakukan Minto Waluyo dalam menulis *Mudah Cepat Tepat dalam Aplikasi SEM* mampu memenuhi kebutuhan para peneliti dalam bidang ini. Buku ini juga memaparkan perbandingan dalam menggunakan *tool* SEM, PLS, GSCA, korelasi, dan regresi.

Minto Waluyo adalah anak petani, lulusan S-1 Teknik Kimia UPN Veteran Jatim, S-2 Teknik Industri ITATS Surabaya, S-2 Manajemen Unkris Jakarta, dan S-3 Manajemen Unair Surabaya. Berkat jalan pikirannya yang unik, banyak karyanya yang diminati oleh pembaca.

Menurut saya, buku ini sangat menarik baik dari segi tampilan maupun isinya. Bahasa yang digunakan pun sangat sederhana dengan tetap menjaga etika keilmuan. Kelebihan buku ini adalah menggunakan tema yang banyak diminati para peneliti di bidang teknik industri, sosial, psikologi, kedokteran, manajemen, dan sebagainya. Saya merekomendasikan kepada para akademisi, khususnya mahasiswa dan peneliti untuk memiliki buku ini.

Surabaya, September 2019

rof. Dr. H. Soepastan Pranoto,

S.E., M.M., Ak. C.A.

KATA PFNGANTAR

Penulis mengucapkan puji dan syukur ke hadirat Allah Swt., karena dengan segala rahmat, taufik, dan hidayah-Nya, buku referensi dua judul SEM yang merupakan salah satu tugas Tridharma Perguruan Tinggi berjudul *Mudah Cepat Tepat dalam Aplikasi SEM* dapat diterbitkan. Buku ini merupakan kumpulan dari beberapa bidang ilmu yang diaplikasikan dalam penggunan *Structural Equation Modelling* (SEM). Materi pembahasan buku ini terdiri dari (1) dasar-dasar SEM, (2) pengujian hipotesis, (3) cara menguji validitas dan reliabilitas yang digunakan dalam proses pengerjaan SEM, (4) serta pembahasan tentang pengujian hipotesis dalam SEM. Penulis menggunakan *tool* SEM saat menggarap disertasi dan beberapa penelitian, dan pengalaman inilah yang akan penulis bagikan pada pembaca.

Salah satu buku yang pernah diterbitkan oleh penulis adalah *Buku Panduan dan Aplikasi Structural Equation Modeling*. Buku tersebut pernah menjadi buku terlaris menurut salah satu toko buku di kota Surabaya.

Buku referensi ini dapat digunakan sebagai acuan untuk pengerjaan dan pembelajaran metode SEM bagi mahasiswa S-1, S-2, dan S-3. Penyusunan buku ini dapat berjalan lancar karena bantuan dari banyak pihak, untuk itu, penulis mengucapkan terima kasih kepada semua pihak yang berkontribusi baik secara materi maupun moral. Penyusun berharap, buku ini dapat bermanfaat bagi semua pihak. Oleh karena itu, kritik dan saran demi kesempurnan penerbitan pada masa yang akan datang sangat penulis tunggu.

Surabaya, 5 September 2019

Penyusun

DAFTAR ISI

Bab 1 Pengantar Structural Equation Modeling	1
Bab 2 Korelasi dan Regresi	33
Bab 3 Aplikasi Structural Equation Modeling	53
Bab 4 Pembahasan	89
Daftar Pustaka	93
Lampiran	97
Output Measurement Model	99
Output Measurement Model Akhir	110
Output Structural Equation Model	119
Output Modifikasi Model	128

BAB 7 PENGANTAR STRUCTURAL EQUATION MODELING

PENDAHULUAN

Penelitian pada bidang manajemen, teknik industri, psikologi, dan sosial kebanyakan bersifat multidimensional yang berusaha menjelaskan pelbagai fenomena praktis melalui pelbagai dimensi atau indikator yang impirisnya relatif "rumit". Uraian tersebut memunculkan penelitian model yang begitu kompleks, sehingga membawa dampak dalam proses pengambilan keputusan yang "rumit" pula. Kerumitan penelitian dapat menjadi mudah dengan adanya pelbagai pola hubungan kausalitas yang berjenjang. Untuk itu, dibutuhkan sebuah alat analisis yang mampu memecahkan dan memberikan solusi terbaik untuk model "rumit".

Penelitian multidimensi membutuhkan alat analisis. Adapun alat analisis yang selama ini kita kenal, yaitu

- a. analisis regresi berganda;
- b. analisis diskriminan; dan
- c. analisis faktor eksploratori.

Alat analisis tersebut masih mempunyai kelemahan karena hanya dapat menganalisis satu hubungan pada satu waktu atau hanya dapat menguji satu variabel dependen melalui beberapa variabel independen. Fakta di lapangan menunjukkan bahwa penelitian pada bidang manajemen, psikologi, dan teknik industri dihadapkan lebih dari satu variabel dependen yang harus saling berhubungan dan berpengaruh. Teknik analisis yang digunakan untuk menganalisis masalah "rumit" tersebut tak lain dengan menggunakan teknik structural equation modeling (SEM) melalui tool amos yang merupakan kombinasi dari beberapa teknik multivarian.

Nama lain dari SEM adalah *causal modeling, causal analysis, simultaneous equation modeling,* dan analisis struktur kovarians. SEM adalah sekumpulan teknik-teknik statistik yang memungkinkan

pengujian sebuah rangkaian hubungan yang relatif "rumit" secara berjenjang. Hubungan rumit tersebut dapat diartikan sebagai rangkaian hubungan yang dibangun antara satu atau beberapa variabel dependen/endogen dengan satu atau beberapa variabel independen/eksogen. Bahkan, dapat juga dengan variabel independen/eksogen lebih dari satu. Setiap variabel dependen/endogendan/eksogen berbentuk faktor atau konstruksi yang dibangun dari beberapa indikator yang diobservasi secara langsung. SEM juga sering disebut sebagai path analysis atau confirmatory factor analysis.

Tool SEM sebagai alat analisis mampu menjawab masalah yang bersifat korelasi, regresif, dan dapat mengidentifikasi dimensi sebuah konsep (dimensional). Untuk itu, tool SEM dapat dikatakan sebagai kombinasi antara analisis faktor dan analisis regresi ganda untuk membangun model penelitian yang berpijak pada justifikasi teoretis atau proses nalar yang kuat, sehingga analisis faktor yang berlaku adalah analisis faktor konfirmatori (confirmatory factor analysis) karena bertujuan untuk mengestimasi hubungan antara variabel yang dihipotesiskan.

GAMBAR KONVENSI SEM

Berdasarkan *tool* amos konvensi SEM yang berlaku dalam diagram SEM adalah sebagai berikut.

a. Faktor /Variabel/Konstruksi Variabel laten

Faktor/variabel/konstruksi disebut juga variabel laten, karena merupakan bentukan atau *unobserved variable*. Faktor/variabel/konstruksi adalah variabel bentukan yang dibentuk melalui indikator-indikator yang diamati. Bentukan tersebut dapat digambarkan sebagai elips atau oval.

Notasi tidak selalu menggunakan simbol Y,

→ X, tetapi juga bisa disimbolkan dengan
yang lainnya.

b. Variabel Terukur (Measured Variable)

Variabel terukur disebut dengan indikator yang digambarkan dalam bentuk segi empat atau bujur sangkar. Indikator ini disebut juga indicator variable, observed variable, atau manifest parameter/variable. Data dari indikator tersebut dicari melalui penelitian lapangan dan statement nya harus rasional misalnya melalui instrumen survey dengan dasar teori yang kuat.

c. Hubungan Antarvariabel

Hubungan antarvariabel dinyatakan dengan garis dua panah bila garis variabel tidak memiliki hubungan langsung yang dapat dihipotesiskan. Beberapa garis yang terdapat pada tool amos yang diaplikasikan pada model SEM antara lain

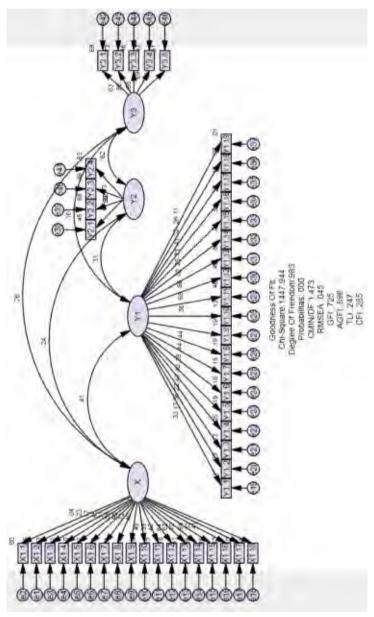
Garis dengan anak panah 2 arah

Garis dengan anak panah 2 arah menunjukkan adanya korelasi antardua variabel. Jika peneliti ingin meregresi dua/lebih variabel independen terhadap satu atau beberapa variabel dependen, maka syarat yang harus dipenuhi yakni korelasi antarvariabel independen tidak signifikan. Kemudian, bila korelasi antarvariabel independen telah signifikan maka dipilih yang paling kuat. Jadi, garis ini bertujuan untuk menguji ada dan tidaknya korelasi serta layak atau tidaknya regresi antarvariabel.

Garis dengan anak panah satu arah

Garis dengan anak panah satu arah menunjukkan adanya kausalitas (regresi) yang dihipotesakan, variabel yang dituju garis anak panah satu arah ini adalah variabel endogen (dependen) dan yang tidak dituju/ditinggal adalah variabel eksogen (independen). Penggambaran model variabel dependen baik yang diobservasi maupun yang tidak diobservasi semuanya mempunyai panah dari lingkaran kecil berlabel "e" dan "z", e (error) menuju variabel terukur (indikator) dan z (disturbance) menuju pada variabel laten. Hal ini dikarenakan dalam model regresi tidak ada prediksi yang sempurna, selalu terdapat residu atau error.

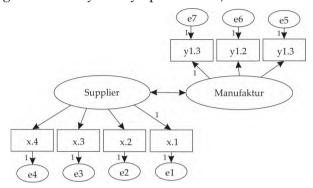
MACAM-MACAM MODEL

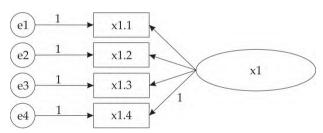

Penelitian pada bidang manajemen, psikologi, sosial, dan teknik manajemen industri dapat menggunakan dua macam model, yaitu deskriptif dan prediktif. Pendekatan kedua model SEM dapat dijelaskan sebagai berikut.

a. Model Deskriptif: Measurement Model

Measurement model berfungsi untuk mengukur kekuatan struktur dari dimensi-dimensi yang membentuk sebuah faktor/ variabel/konstruksi. Model deskriptif adalah model yang ditujukan untuk mendeskripsikan sebuah konsep atau pembentukan faktor/variabel/konstruksi. *Measurement model* adalah proses pemodelan vang diarahkan untuk menyelidiki unidimensionalitas dari indikator-indikator yang menjelaskan sebuah variabel laten. Measurement model berhubungan dengan faktor/variabel/ konstruksi baik endogen maupun eksogen. Peneliti dapat memulai penelitian dengan menentukan beberapa variabel untuk menyelesaikan masalah multidimensional dan mengonversi model. Teknik analisis ini disebut confirmatory factor analysis. Measurement model akan menghasilkan penilaian mengenai validitas konvergen (convergent validity) dan validitas diskriminan (discriminant validity). Measurement model secara empiris dapat dilakukan secara menyeluruh maupun parsial. Penulis akan memaparkan model secara menyeluruh dan parsial.

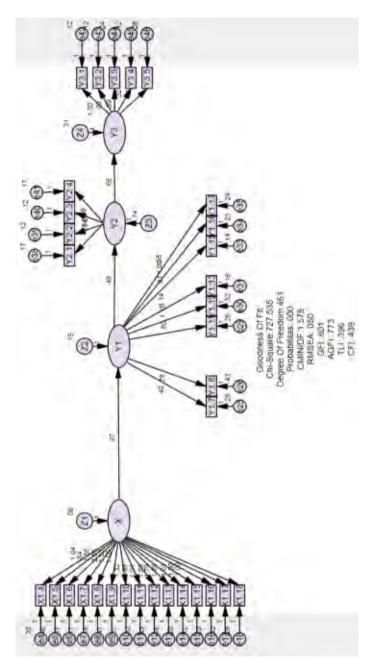
b. Measurement Model Secara Menyeluruh/ Simultan


Peneliti membuat model pengukuran berdasarkan justifikasi teori. Semua hubungan antarkonstruksi digambarkan dengan bentuk garis panah dua arah yang bertujuan untuk menganalisis korelasinya. Korelasi antarvariabel eksogen/independen insignifikan. Apabila terjadi korelasi yang signifikan antara kedua variabel independen, maka dapat dipilih nilai terbesar, sedangkan variabel independen dengan dependen korelasinya diharapkan signifikan. Model yang disajikan pada bab ini memungkinkan terjadinya perubahan dari variabel endogen/dependen menjadi variabel eksogen/independen akibat proses pemodelan secara simultan (menyeluruh). Unidimensionalitas dari dimensi-dimensi yang membentuk konstruksi dapat pula dianalisis. Gambar berikut ini adalah contoh dari *measurement model* yang dilakukan secara menyeluruh. Tahap ini harus dilakukan terlebih dahulu sebelum analisis SEM dioperasikan.


Gambar 1.1 *Measurement Model* Pengaruh Kualitas Layanan Terhadap Efektivitas *E-toll*, kepuasan pelanggan, dan loyalitas pelanggan (setelah konstruksi pembentuk X dan pembentuk Y pada proses *run* terjadi *warning error* sehingga indikator X_1 , X_2 , X_3 , X_4 , dan X_5 menjadi indikator X dan indikator Y_1 . Y_2 , Y_3 , Y_4 , Y_5 , dan Y_6 menjadi indikator Y).

c. Measurement Model Secara Parsial

Model pengukuran dilakukan secara terpisah pada tiap konstruksi (*single measurement model*) atau dapat pula dilakukan antarkonstruksi (*multidimensional model*). Gambar di bawah ini merupakan jenis dari *measurement model* yang dilakukan secara parsial (materi ini juga dibahas pada buku Waluyo [2009], dan keterangan ini sifatnya hanya penekanan).


Gambar 1.2 Multidimensional Model

Gambar 1.3 Single Measurement Model

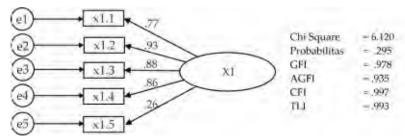
d. Model Prediktif: Structural Model (Causal Model)

Garis dengan anak panah satu arah menunjukkan adanya hubungan kausalitas (regresi) yang dihipotesiskan antarkonstruksi. Model struktural akan menghasilkan penilaian mengenai validitas prediktif (*predictive validity*). Di bawah ini adalah contoh gambar *structural model*.

Gambar 1.4 *Structural Model* Pengaruh Kualitas Layanan Terhadap Efektivitas *E-toll,* Kepuasan Pelanggan, dan Loyalitas Pelanggan (setelah indikator X yang tidak valid dan tidak signifikan dibuang termasuk indikator Y).

Signifikan dalam penelitian ini berarti tingkat kepercayaan terhadap sebuah hipotesis yang akan menentukan apakah hipotesis diterima atau tidak. Kata "signifikan" sering dihubungkan dengan hasil penelitian, misalnya penggunaan kata signifikan dalam penelitian ini mengandung kebenaran yang cukup signifikan, yaitu hingga 98%. Kata signifikan memiliki arti bahwa tingkat kebenaran tidak terlepas dari permasalahan tertentu, dengan begitu hipotesis pada penelitian dapat diterima. Hal tersebut dapat diterapkan dan digeneralisasikan pada populasi.

PENGUJIAN HIPOTESIS


Hipotesis

- H₀: Tidak ada perbedaan antara matriks kovarians populasi yang diestimasi dengan matriks kovarians sampel.
- H₁: Ada perbedaan antara matriks kovarians populasi yang diestimasi dengan matriks kovarians sampel.

Pada pengujian hipotesis ini, hipotesis satu diterima atau dengan kata lain H₁ diterima, sehingga hipotesis nol tidak diterima atau dengan kata lain H₀ ditolak.

a. Hipotesis Mengenai Nilai Lambda (λ)

Nilai lambda digunakan untuk menilai kecocokan, kesesuaian, atau unidimensionalitas dari indikator-indikator yang membentuk sebuah faktor. Analisis faktor konfirmatori digunakan pada model pengukuran yang akan menghasilkan *loading factor* atau nilai lambda (λ). Gambar berikut adalah contoh pengujian analisa faktor konfirmatori.

Gambar 1.5 Analisis Faktor Konfirmatori (1)

Gambar di atas memperlihatkan bahwa semua parameter *goodness of fit* yang dihasilkan telah terpenuhi, kemudian *loading factor* tiap indikator disajikan dalam tabel berikut.

Estimate S.E. C.R. P. $x1.4 \leftarrow X1$ 1.000 11.270 $x1.3 \leftarrow X1$ 1.177 0.1040.000 $x1.2 \leftarrow X1$ 0.098 11.341 0.000 1.113 1.240 12.213 $x1.1 \leftarrow X1$ 0.1020.000 0.1320.123 1.071 0.284 $x1.5 \leftarrow X1$

Tabel 1.1 Regression Weight Masurement Model X1

Dari tabel di atas dapat disimpulkan bahwa semua indikator X1 s/d X4 signifikan kecuali indikator X1.5, yang mana probabilitasnya \geq 5% atau secara statistik dapat dinyatakan sebagai simbolisasi hipotesis tersebut adalah

Ho: $\mu 1 \neq \mu 2$ untuk hipotesis dua-arah, atau

Ho: $\mu 1 > \mu 2$ untuk hipotesis satu-arah.

Yang dapat juga dinyatakan sebagai:

Ho: $\mu 1 - \mu 2 \neq 0$ untuk hipotesis dua-arah, atau

Ho: $\mu 1 - \mu 2 > 0$ untuk hipotesis satu-arah.

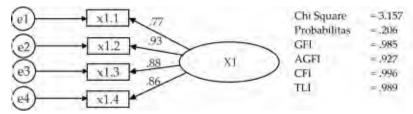
Kasus penelitian yang hendak menguji perbedaan lebih dari dua kelompok subjek, maka simbolisasi hipotesisnya adalah

Ho:
$$\mu 1 \neq \mu 2 \neq \mu 3 \neq \mu 4$$

atau

Ho:
$$\mu 1 - \mu 2 \neq \mu 2 - \mu 3 \neq \mu 3 - \mu 4 \neq 0$$
.

b. Uji terhadap indikator $x_{1.5}$


$$H_0$$
: $\lambda_{1.5} = 0$ untuk H_1 : $\lambda_{1.5} \neq 0$
Nilai t -hitung dari $\lambda_{1.5} = 1,071$

t-tabel pada level 0,05 dengan df sebesar 5 adalah 2,571

Dapat dilihat bahwa tabel uji–t terhadap $\lambda_{1.5}$ adalah 1,071 < 2,571 t–hitung lebih kecil dari t–tabel (ditolak) jadi nilai $\lambda_{1.5}$ insignifikan.

Cara menguji *loading factor* dapat dilakukan dengan cara yang sama, yaitu dengan merevisi analisis faktor konfirmatori dengan membuang indikator X1.5. Setelah itu, proses perhitungan amos 24 dapat dimulai seperti yang tertera pada gambar 1.6.

Peneliti dapat mengabaikan pembuangan indikator, tetapi bila diteruskan gambar model modifikasi yang dihasilkan kurang maksimal, sehingga pembahasan menjadi lebih rumit pula. Penulis menyarankan jika peneliti menemukan indikator tidak valid, maka indikator tersebut dapat dibuang, sehingga measurement model menjadi lebih bagus.

Gambar 1.6 Single Measurement Model (2)

Parameter *goodness of fit* pada gambar di atas menunjukkan semua yang dihasilkan model telah terpenuhi, selanjutnya *loading factor* dari tiap indikator disajikan dalam tabel berikut.

Tabel 1.2 Regression Weight Masurement Model X1

	Estimate	S.E.	C.R.	P.
x1.4 ← X1	1.000			
x1.3 ← X1	1.178	0.104	11.287	0.000
x1.2 ← X1	1.113	0.098	11.357	0.000
x1.1 ← X1	1.238	0.101	12.212	0.000

Dari tabel di atas dapat disimpulkan bahwa semua indikator X_1 signifikan. Poin penting pada tabel di atas yaitu apabila indikator yang insignifikan dibuang, maka nilai CR (nilai t-hitung) meningkat dan signifikasinya. Probabilitas di bawah 5% atau secara statistik dapat dinyatakan sebagai berikut.

c. Uji terhadap indikator $X_{1,3}$

 H_0 : $\lambda_{1.3}$ = 0 untuk H_1 : $\lambda_{1.3}$ ≠ 0 Nilai t-hitung dari $\lambda_{1.3}$ = 11,287 (CR= Nilai t-hitung) t-tabel pada level 0,05 dengan df sebesar 4 adalah 2,766 Dapat dilihat bahwa uji-t terhadap $\lambda_{1.3}$ adalah 11,287 > 2,766 \blacksquare ► t-hitung lebih besar dari t-tabel

Uraian di atas menunjukkan bahwa hipotesis satu (H_1) menyatakan koefisien $\lambda_{1,3}$ tidak sama dengan nol. Maka hasil yang diperoleh signifikan, karena itu H_0 ditolak.

Cara menguji *loading factor* yang demikian dapat diterapkan pula pada indikator lainnya. Analisis faktor konfirmatori ditujukan untuk mengonfirmasi apakah variabel-variabel yang diobservasi mempunyai ciri yang sama antara satu variabel dengan variabel lainnya. Apabila peneliti ingin melakukan *single* measurement model, maka jumlah indikator yang digunakan minimal empat, karena aplikasi pada amos single measurement model tidak dapat mengestimasi model yang mempunyai indikator kurang dari tiga bila prosesnya parsial, tetapi bila simultan, maka model tersebut dapat terestimasi.

Sampel data dalam penelitian SEM diposisikan sebagai input matriks kovarians. Selanjutnya, matriks kovarians digunakan untuk menghasilkan populasi yang diestimasi (estimated population covariance matrix), sehingga mampu menciptakan populasi yang konsisten dengan matriks kovarians.

PARAMETER PENGUJIAN MODEL

Pernyataan di atas memunculkan dalam operasi SEM parameter seperti koefisien regresi, varian, dan kovarians yang akan diestimasi untuk menghasilkan *estimated population covariance matrix*. Bila model yang dikembangkan baik, maka parameter estimasi akan menghasilkan *estimated covarians matrix* mendekati sampel *covariance matrix*. Evaluasi pertama diuji dengan menggunakan *chi-square* dan *fit index*. Uji *chi-square* bergantung pada ukuran sampel, maka diperlukan beberapa indeks kesesuaian dan kecukupan model yang sensitif terhadap ukuran sampel. Indeks-indeks tersebut antara lain GFI, AGFI, CMIN/DF, TLI, CFI, dan RMSEA. Berikut akan dijelaskan lebih rinci mengenai indeks-indeks di atas

A. Chi-Square (X2)

Chi–square (X^2) merupakan alat ukur yang fundamental untuk mengukur overall fit. Pengujian chi-square (X^2) bersifat sensitif terhadap besarnya sampel yang digunakan, bila jumlah sampel kurang dari 200 sampel, maka chi-square harus didampingi alat uji lainnya (Hair dkk., 1995; Tabachnick & Fidell, 1996). Model yang diuji dianggap memuaskan apabila nilai chi-square-nya rendah (lihat tabel 1.3). Semakin kecil nilai X^2 , maka semakin baik model yang dihasilkan (karena dalam uji beda chi-square, $X^2 = 0$. Hal tersebut menandakan tidak adanya perbedaan, H_0 diterima). Analisis dapat dilihat pada probabilitas dengan cut off value sebesar p > 0.05 atau p > 0.10 (Hulland dkk., 1996).

Berdasarkan pengalaman penulis bila, nilai p > 0.05, maka semua parameter pengujian model telah sesuai. *Chi–square* (X^2) bertujuan untuk menguji model dan mengembangkan sesuai dengan data. Nilai yang dibutuhkan adalah X^2 secara signifikan

untuk menguji hipotesa nol bahwa estimated population covariance tidak sama dengan sample covariance. Pengujian chi-square (X²) adalah nilai rendah yang menghasilkan tingkat signifikan lebih besar dari 0,05 serta matriks kovarian dan populasi yang diestimasikan tidak menunjukkan perbedaan.

B. Goodness of Fit Index (GFI)

Goodness of fit index (GFI) adalah analog dari R² dalam regresi berganda (Tanaka & Huba, 1989). GFI dapat disesuaikan dengan degrees of freedom untuk menguji diterima atau tidaknya model. Rata-rata perbandingan dari indeks kesesuaian untuk menghitung varian dalam matriks kovarians sampel dijelaskan oleh matriks kovarians populasi yang terestimasi (Bentler, 1983; Tanaka & Huba, 1989). Ukuran non statistikal dari GFI mempunyai rentang nilai antara 0 (poor fit) sampai 1,0 (perfect fit). Nilai tertinggi dalam indeks menunjukkan sebuah better fit, sedangkan GFI diusahakan untuk memperoleh nilai 0,90.

C. Adjusted Goodness of Fit Index (AGFI)

Tingkat penerimaan yang direkomendasikan apabila AGFI mempunyai nilai sama dengan atau lebih besar dari 0,90. Nilai sebesar 0,95 dapat diintepretasikan sebagai tingkatan yang efisien (*good overall model fit*), sedangkan nilai antara 0,90-0,95 menunjukkan tingkatan cukup (*adequate model fit*). Indeks ini diperoleh dengan rumus sebagai berikut.

$$AGFI = 1 - (1 - GFI)\frac{d_b}{d}$$

di mana

$$d_b = \sum_{g=1}^{G} p^{*(g)} = jumlah \ sampel \ moments$$

 $d = \deg rees f$ freedom

D. CMIN/DF atau Relative X²

CMIN/DF merupakan salah satu indikator untuk mengukur tingkatan *fit* sebuah model yang dihasilkan dari statistik *chi-square* (CMIN) dibagi dengan *degree of freedom* (DF). CMIN/DF yang diharapkan adalah sebesar \leq 2,0 yang menunjukkan adanya penerimaan dari model.

E. Tucker Lewis Index (TLI)

Nilai TLI yang diharapkan sebagai acuan untuk diterimanya sebuah model adalah sebesar ≥0,95 dan nilai yang mendekati 1,0 menunjukkan *a very good fit*. Indeks ini diperoleh dengan rumus sebagai berikut.

$$TLI = \frac{\frac{C_b}{d_b} - \frac{C}{d}}{\frac{C_b}{d_b} - 1}$$

di mana

C = diskrepansi dari model yang dievaluasi

D = degrees of freedom

C_b dan d_b = diskrepansi dan *degrees of freedom* dari *basline* model yang dijadikan pembanding.

Nilai indeks TLI merupakan pembanding dari model yang diuji dengan *baseline*. Terdapat tiga *baseline* model dalam output amos, yaitu *saturated*, *independence*, dan *default*.

- 1) Saturated model disebut juga full atau perfect model. Model ini diprogram dengan jumlah parameter yang diestimasi sama dengan jumlah distinct sample momentsnya, sehingga diperoleh degrees of freedomnya sebesar nol (0). Oleh karena itu, saturated model akan menghasilkan chi-square = 0,00 dan df=0;
- 2) independence model diprogram agar semua variabelnya dibuat tidak berkorelasi. Model ini memiliki jumlah parameter yang sama dengan jumlah variabel yang diobservasi. Hasil dari model independen ini poor fit terhadap satu set data yang digunakan. Nilai chi—square yang dihasilkan akan menjadi sangat besar;
- 3) default model adalah hasil model yang diuji

F. Comparative Fit Index (CFI)

Besaran indeks CFI berada pada rentang 0-1. Indeks mendekati nilai 1, maka akan mengindikasikan tingkat penerimaan model yang paling tinggi. CFI tidak dipengaruhi oleh ukuran sampel, hal itu untuk mengukur tingkat penerimaan sebuah model (Hulland, [1996] & Tanaka, [1993]). Indeks CFI identik dengan *relative noncentrality index* (RNI) dari McDonald dan Marsh (1990). Nilai CFI yang diharapkan sebesar ≥ 0.95 . Indeks ini diperoleh dari rumus sebagai berikut.

$$CFI = RNI = 1 - \frac{C - d}{C_b - d_b}$$

Indeks TLI dan CFI dalam pengujian model sangat dianjurkan untuk digunakan, karena indeks-indeks tersebut sensitif terhadap besarnya sampel dan kurang dipengaruhi oleh kerumitan model.

G. The Root Mean Square Error of Approximation (RMSEA)

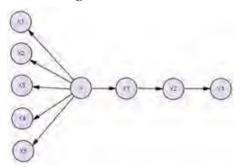
Nilai RMSEA yang lebih kecil atau sama dengan 0,08 merupakan indeks untuk dapat diterimanya model. Indeks RMSEA dapat digunakan untuk mengkompensasi statistik *chi-square* dalam sampel yang besar. Nilai RMSEA menunjukkan *goodness of fit* yang dapat diharapkan bila model diestimasi dalam populasi (Hair dkk., 2006). Indeks-indeks yang dapat digunakan untuk menguji kelayakan sebuah model diringkas pada tabel di bawah ini.

Goodness of Fit Indices Cut – Off Value X² Chi Square Diharapkan Kecil **Probabilitas** ≥ 0.05 CMIN/DF $\leq 2,00$ **RMSEA** ≤ 0.08 **GFI** ≥ 0.90 **AGFI** ≥ 0.90 TLI ≥ 0,95 **CFI** ≥ 0.95

Tabel 1.3 Goodness of Fit Indices

URUTAN LANGKAH SEM

Langkah- langkah pemodelan SEM pada dasarnya terdiri dari *measurement model* dan *structural model*. *Measurement model* berfungsi untuk mengkonfirmasi sebuah dimensi atau faktor berdasarkan indikatornya. Struktural model adalah struktur hubungan yang membentuk atau menjelaskan kausalitas antara faktor/konstuksi/variabel. Berikut adalah langkah-langkah pemodelan yang perlu dilakukan.


- a) Model dikembangan berbasis teori;
- b) hubungan kausalitas ditunjukan dengan diagram alur;
- c) konversi diagram alur ke dalam serangkaian persamaan struktural dan spesifikasi model pengukuran;
- d) matriks input dan teknik estimasi atas model yang dibangun;
- e) menilai problem identifikasi;
- f) evaluasi model; dan
- g) interpretasi dan modifikasi model.

1. Langkah Pertama: Model Dikembangan Berbasis Teori

Pengembangan model berbasis teori dapat dilakukan melalui telaah pustaka yang intens guna mendapatkan justifikasi atas model teoretis yang dikembangkan. Tanpa dasar teoretis yang kuat, SEM tidak dapat digunakan. Hal ini disebabkan karena SEM tidak digunakan untuk menghasilkan sebuah model, tetapi untuk mengkonfirmasi model teoretis melalui data empirik. Justifikasi teori yang kuat akan menambah keyakinan peneliti untuk mengajukan model kausalitas dengan menganggap adanya hubungan sebab akibat antara dua atau lebih variabel.

Kebenaran kausalitas teoretis diuji melalui data empirik, karena SEM tidak digunakan untuk menghasilkan kausalitas. Hal itulah yang menyebabkan uji hipotesis berbeda dengan uji *chi-square*.

Syarat mutlak aplikasi SEM adalah telaah teori secara mendalam untuk mendapatkan sebuah justifikasi teori dari model yang akan diuji. Teknik ini digunakan untuk menguji sebuah teori. Teori yang digunakan dapat berasal dari teori baru yang dikembangkan atau teori yang sudah dikembangkan sejak lama. Pengembangan model didasarkan pada pijakan teoretis, yaitu dengan membangun hubungan-hubungan antarfenomena. Peneliti mempunyai kebebasan untuk membangun hubungan justifikasi teoretis yang kuat, di sinilah dimungkinkan terjadinya kesalahan spesifikasi. Kesalahan paling kritis dalam pengembangan model adalah terabaikannya satu atau beberapa variabel prediktif dalam menjelaskan sebuah model. Kesalahan semacam itu dikenal dengan kesalahan spesifikasi (spesification error). Kesalahan tersebut dapat dihindari dengan merumuskan dan mencari dukungan teoretis yang memadai. Hal ini penting karena kesalahan spesifikasi membawa implikasi penilaian yang diberikan, setelahnya peneliti perlu menguatkan pemahaman teori kerelasi dan regresi.

Gambar 1.7 Model dibangun berdasarkan teori

Korelasi

Korelasi merupakan analisis dalam statistik untuk mencari hubungan antara dua variabel yang bersifat kuantitatif. Analisis korelasi merupakan pembahasan studi derajat hubungan antara dua variabel atau lebih, misalnya variabel X dan variabel Y. Secara spesifik, korelasi memiliki definisi mengisyaratkan hubungan yang bersifat substantif numerik (bilangan/angka). Maka, dapat disimpulkan bahwa tujuan dari analisis korelasi adalah untuk menentukan/melihat seberapa erat hubungan antara dua variabel.

Regresi

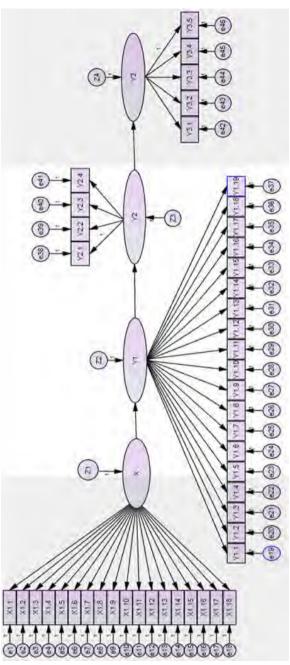
Analisis regresi dalam bahasan statistika merupakan metode untuk menentukan hubungan sebab-akibat antarsatu variabel dengan variabel yang lain.

Analisis regresi membahas hubungan persamaan matematika yang menyatakan hubungan fungsional antara setiap variabel. Hubungan fungsional antar satu variabel prediktor dengan satu variabel kriterium disebut analisis regresi sederhana (tunggal). Sedangkan hubungan fungsional yang lebih dari satu variabel disebut analisis regresi ganda.

Penelitian SEM mencakup tiga kegiatan, yaitu

- a) analisis faktor konfirmatori berfungsi untuk pengecekan validitas dan reliabilitas *instrument* (variabel *manifest*),
- b) analisis jalur berfungsi untuk pengujian model hubungan antar variabel laten dengan variabel *manifest*, dan
- c) analisis regresi berfungsi untuk mendapatkan model yang cocok untuk prediksi.

Penelitian SEM didasarkan pada dua alasan. Pertama, SEM mempunyai kemampuan untuk mengestimasi hubungan antarvariabel dalam bentuk hubungan struktural. Kedua, SEM mempunyai kemampuan untuk menggambarkan pola hubungan antarvariabel laten dengan variabel *manifest*. Dengan demikian, SEM tidak hanya fokus pada pengaruh antarvariabel (ANOVA), tetapi pada hubungan antarvariabel (analisis regresi) yang *multiple relationship*. Maka, untuk membuat judul penelitian yang fokus terhadap SEM seyogianya peneliti menggunakan kata **hubungan** bukan kata **pengaruh**.


2. Langkah Kedua: Hubungan Kausalitas Ditunjukan dengan Diagram Alur (*Path Diagram*)

Path diagram merupakan model teoretis yang telah dibangun pada langkah pertama yang selanjutnya akan dikonversikan ke dalam path diagram guna mempermudah peneliti melihat hubungan kausalitas yang ingin diuji. Hubungan kausal biasanya dinyatakan dalam bentuk persamaan, tetapi dalam SEM hubungan kausalitas cukup digambarkan dalam sebuah path diagram. Selanjutnya, bahasa program akan mengonversi gambar menjadi persamaan dan persamaan menjadi estimasi.

Peneliti akan bekerja dengan "konstruksi" atau "faktor", yaitu konsep-konsep yang memiliki pijakan teoretis untuk menjelaskan pelbagai hubungan. Contoh *path* diagram dapat dilihat pada gambar 1.8.

Konstruksi yang dibangun dalam gambar dapat dibedakan menjadi 2 kelompok konstruksi, yaitu eksogen dan endogen yang akan diuraikan sebagai berikut.

Konstruksi eksogen (*exogenous construct*) juga dikenal sebagai *source variable* atau *independent variable* yang tidak dapat diprediksi oleh variabel lain secara diagramatis. Konstruksi eksogen dapat dilihat dari gambar konstruksi yang ditinggalkan oleh garis satu ujung anak panah. Konstruksi eksogen dalam gambar 1.7 adalah kualitas layanan (X).

Gambar 1.8 *Path* diagram setelah *warning* sehingga indikator $X_{1'}$ $X_{2'}$ $X_{3'}$ X_4 dan X_5 menjadi indikatornya X termasuk termasuk indikatornya Y_1 .

Konstruksi endogen (endogenous construct) adalah faktor yang diprediksi oleh satu atau beberapa konstruksi eksogen. Konstruksi endogen dapat memprediksi satu atau lebih sebagai konstruksi eksoge. Konstruksi endogen pada kualitas layanan (X) terdapat pada efektivitas program e-toll (Y_1), tetapi efektivitas program e-toll (Y_1) menjadi konstruksi eksogen kepuasan pelanggan (Y_2) dan seterusnya. Selanjutnya, peneliti dapat konstruksi endogen dan konstruksi eksogen. Gambar 1.7 merupakan konstruksi eksogen kualitas layanan (X). Konstruksi endogen terdiri dari reliability (X_1), assurance (X_2), tangible (X_3), empathy (X_4), responsiveness (X_5), efektivitas program e-toll (Y_1), kepuasan pelanggan (Y_2), dan loyalitas pelanggan (Y_3).

Buku ini akan membahas variabel/konstruksi eksogen yang dibentuk dari konstruksi endogen yang terdiri dari *reliability* (X_1) , assurance (X_2) , tangible (X_3) , empathy (X_4) , dan responsiveness (X_5) . Jika prosesnya tidak bisa dijalankan, kelima indikator konstruksi eksogen menjadi indikator konstruksi eksogen kualitas layanan (X) (lihat gambar 1.7).

3. Langkah Ketiga: Konversi Diagram Alur ke dalam Persamaan

Setelah model teoretis dikembangkan dan digambarkan dalam sebuah diagram alur, peneliti dapat mengkonversi model ke dalam rangkaian persamaan yang terdiri dari

 a) persamaan struktural (structural equation)
 Persamaan ini untuk menyatakan hubungan kausalitas antarpelbagai konstruksi. Berikut adalah contoh pedoman struktural.

Konstruksi endogen 1 = f (konstruksi eksogen) + Error Konstruksi endogen 1 = konstruksi eksogen 1 + Error Apabila dalam model terdapat lebih dari satu konstruksi endogen, maka persamaan strukturalnya adalah sebagai berikut.

Konstruksi endogen 2 = f (Konstruksi endogen 1 sebagai konstruk eksogen) + Error ... dan seterusnya

b) persamaan model pengukuran (*measurement model*) Persamaan model pengukuran hanya melibatkan indikator dari pengukur konstruksi. Jika model awal tidak dapat di*run*, maka contoh yang mudah dipahami pembaca dapat diambil dari salah satu contoh notasi Y₃ karena indikator X cukup banyak (18 indikator) (lihat gambar 1.7). Persamaan model pengukuran, sebagai berikut.

```
Share info = \lambda 1 Loyalitas + e 42

Say positive things= \lambda 2 Loyalitas + e 43

Recommended friends = \lambda 3 Loyalitas + e 44

Continous Purchasing = \lambda 4 Loyalitas + e 45,

Purchase Additional = \lambda 5 Loyalitas + e 46
```

4. Langkah Keempat: Memilih Matriks Input dan Teknik Estimasi

Pengolahan data pada penenlitian model SEM menggunakan matriks varian sebagai input data untuk estimasi yang akan dilakukan, inilah yang menjadi perbedaan SEM dengan teknik multivarian lainnya. Data yang digunakan adalah data individual, tetapi data tersebut akan segera dikonversi ke dalam bentuk matriks varian/kovarian sebelum estimasi dilakukan. Pengelolaan tool amos pada metode SEM bukanlah pada data individual, tetapi pada pola hubungan antarresponden. Matriks varian/kovarian digunakan karena memiliki keunggulan dalam menyajikan perbandingan yang valid antara populasi yang berbeda. Matriks kovarian umumnya lebih banyak digunakan dalam penelitian hubungan dan sebab. Bila menggunakan matriks korelasi sebagai input, standar error yang dilaporkan dari pelbagai penelitian umumnya menunjukkan angka yang kurang akurat. Hair dkk. (2006) menyarankan agar peneliti menggunakan matriks varian/kovarian pada saat pengujian teori untuk memvalidasi hubungan kausalitas karena lebih memenuhi asumsi-asumsi metodologi penelitian.

Ukuran sampel memegang peranan penting dalam estimasi dan interpretasi hasil SEM, walaupun data individual tidak menjadi input analisis. Hair dkk. menemukan bahwa ukuran sampel yang sesuai antara 100—200 sampel untuk teknik *maximum likelihood estimation*. Sementara itu, Minto menemukan ukuran sampel sampai 300 masih akurat jika menggunakan teknik *maximum likelihood estimation* (hasil penelitian). Oleh karena itu, pada tabel 1.4 ditulis (ML atau GLS) apabila teknik yang dipilih *maximum likelihood estimation* maka sampel minimumnya adalah 100 sampel. Hal tesebut sesuai dengan apa yang dikemukakan oleh Hair dkk. Jadi, asumsi ukuran sampel SEM yang harus dipenuhi minimal sekitar 100 sampel.

Program komputer yang dapat digunakan untuk mengestimasi model antara lain LISREL, EQS, COSAM, PLS, dan AMOS. Sampai saat ini versi amos yang terbaru adalah amos 24 yang

berada di bawah lisensi SPSS.

Teknik estimasi yang tersedia dalam amos antara lain

- a. unweighted least square estimation (ULS);
- b. scale free least square estimation (SLS);
- c. asymptotically distribution—free estimation (ADF);
- d. maximum likelihood estimation (ML); dan
- e. generalized least square estimation (GLS).

Pemilihan teknik estimasi berdasarkan pada jumlah sampel yang digunakan akan diuraikan dalam tabel berikut.

Pertimbangan	Teknik yang dapat dipilih	Keterangan
Bila ukuran sampel adalah kecil (100-200) dan asumsi normalitas dipenuhi.	ML	ULS & SLS biasanya tidak menghasilkan uji X², karena itu tidak menarik perhatian peneliti.
Bila asumsi normalitas dipenuhi dan ukuran sampel sampai dengan antara 200-500.	ML atau GLS	Bila ukuran sampel kurang dari 500, hasil GLS cukup baik.
Bila asumsi normalitas kurang dipenuhi dan ukuran sampel lebih dari 2500.	ADF	ADF kurang cocok bila ukuran sampel kurang dari 2500.

Tabel 1.4 Memilih Teknik Estimasi

5. Langkah Kelima: Menilai Problem Identifikasi

Identifikasi *problem* pada prisipnya berkutat pada ketidakmampuan model yang dikembangkan untuk menghasilkan estimasi yang baik. Masalah tersebut dapat diidentifikasi melalui gejala-gejala berikut.

- a. Muncul angka-angka absurd seperti adanya varian *error* yang negatif;
- b. program tidak mampu menghasilkan matriks informasi yang seharusnya disajikan;
- c. *standard error* untuk satu atau beberapa koefisien sangat besar; dan

 d. munculnya korelasi yang sangat tinggi antar koefisien estimasi yang didapat (misalnya lebih dari 0,99).

Tool amos menjadi salah satu solusi *problem* identifikasi, bila estimasi tidak dapat dilakukan, maka program akan memberikan pesan pada monitor komputer mengenai beberapa kemungkinan mengapa program tidak dapat melakukan estimasi. Contoh pembuangan konstruksi (X₁, X₂, X₃, X₄, dan X₅ termasuk Y₁, Y₂, Y₃, Y₄, Y₅, dan Y₆) dapat menjadi salah satu solusi untuk mengatasi masalah dengan memberikan lebih banyak *constraint* pada model yang dianalisis atau dengan mengurangi konstruksi.

6. Langkah Keenam: Evaluasi Model

Pada langkah ini ketepatan model akan dievaluasi apakah model telah memenuhi kriteria *goodness of fit*. Evaluasi terhadap ketepatan model pada dasarnya telah dilakukan pada waktu model diestimasi oleh amos. Secara lengkap evaluasi terhadap model dapat dilakukan sebagai berikut.

- a) Evaluasi ukuran sampel Menurut Hair dkk. yang dikutip dari Ferdinand (2002), ukuran sampel (data observasi) yang sesuai antara 100-200. Teknik yang dipilih adalah teknik ML, apabila teknik yang dipilih adalah GLS, maka ukuran sampel yang sesuai antara 200—500.
- b) Evaluasi asumsi normalitas dan linearitas Model SEM diestimasi dengan menggunakan *maximum likelihood estimation* yang mensyaratkan dipenuhinya asumsi normalitas. Uji normalitas yang paling mudah adalah dengan mengamati *skewness value*. Nilai statistik untuk menguji normalitas itu disebut sabagai *z-value* (Z_{hitung}) yang dihasilkan melalui rumus berikut.

$$Z_{hitung} = \frac{Skewness}{\sqrt{\frac{6}{N}}}$$

N adalah ukuran sampel

Bila $Z_{\rm hitung}$ > $Z_{\rm tabel}$ (nilai kritis), maka distribusi data terlihat abnormal. $Z_{\rm tabel}$ dapat ditentukan berdasarkan tingkat signifikansi yang dikehendaki. Misalnya, bila nilai yang

dihitung lebih besar dari \pm 2,58 berarti kita dapat menolak asumsi normalitas pada tingkat 0,01 (1%). Umumnya, nilai kritis sebesar \pm 1,96 yang berarti asumsi normalitas ditolak pada tingkat signifikansi 0,05 (5%).

Asumsi normalitas *univariate* dan *multivariate* data dapat dilakukan dengan mengamati nilai kritis hasil pengujian *assesment of normality* dari program amos. Nilai di luar ring -1,96 $\leq c.r \leq$ 1,96 atau bila dilonggarkan menjadi -2,58 $\leq c.r \leq$ 2,58, dapat dikategorikan sebagai data abnormal, oleh karenanya untuk kasus yang tidak memenuhi asumsi tidak diikutsertakan dalam analisis selanjutnya. Asumsi normalitas *multivariate* diamati pada baris terakhir *assesment of normality* dengan melihat C.R yang diperoleh dari rumus berikut.

$$c.r = \frac{koefisien \ kurtosis}{s \tan dard \ errornya} = \frac{koefisien \ kurtosis}{\sqrt{8 p(p+2)/N}}$$

Keterangan:

P = jumlah indikator

N = adalah ukuran sampel

Asumsi linearitas data dapat dilakukan dengan menggunakan program SPSS di mana gambar garis linier antara variabel X dan Y dimulai dari kiri bawah menuju ke kanan atas. Pada tabel 1.4 telah dijelaskan jika data menggunakan teknik ekstimasi *maximum likelihood* asumsi normalitas dapat terpenuhi.

c) Evaluasi atas outliers

Outliers adalah jenis observasi yang memiliki karakteristik unik yang muncul dari observasi lain dan dinyatakan dalam bentuk nilai ekstrem untuk sebuah variabel tunggal (univariate outliers) atau variabel kombinasi (multivariate outliers). Evaluasi atas univariate outliers dapat dilakukan dengan cara mengkonversi data penelitian ke dalam z-score yang mempunyai rata-rata nol dengan standar deviasi sebesar satu. Pedoman evaluasi untuk sampel ukuran besar (100 sampel) jika nilai ambang batas dari z-score berada pada rentang -3 sampai dengan 3 (-3 \geq z-score \leq 3) (Hair dkk., 1995). Oleh karena itu, kasus yang mempunyai nilai -3 \leq z-score \geq 3 akan dikategorikan sebagai outliers dan akan tetap diikutsertakan dalam analisis selanjutnya. Cara

ini dapat dilakukan dengan menggunakan program SPSS yang langkah-langkahnya telah dijelaskan pada buku yang telah diterbitkan.

d) Evaluasi atas multivariate outliers

Evaluasi *multivariate outliers* perlu dilakukan walaupun data yang dianalisis tidak terdapat pada univariate outliers, tetapi jika data telah dikombinasikan dapat berubah menjadi multivariate outliers. Hal ini dapat diamati pada output dari program amos 24 yang akan terlihat pada angka-angka jarak mahalanobis (lihat output structural pada submahalanobis). Jarak mahalonobis untuk tiap observasi dapat dihitung dan akan menunjukkan jarak sebuah observasi dari rata-rata semua variabel dalam ruang multidimensional (Hair dkk., 1995). Uji multivariate outliers dilakukan pada tingkat p < 0,001 bila mahalanobis d-squared pada komputasi amos 24 ada yang lebih besar dari nilai chi-square pada derajat bebas sebesar jumlah variabel dan pada tingkat signifikansi 0,001, maka data tersebut menunjukkan adanya multivariate outliers dan tetap akan diikutsertakan dalam analisis selanjutnya. Bila tidak terdapat alasan khusus untuk mengeluarkan kasus tersebut X² (jumlah indikator; 0,001) dapat dilihat pada excel yang diuraikan langkahnya pada buku yang telah diterbitkan.

e) Evaluasi asumsi atas multikolinearitas dan singularitas

Asumsi atas multikolinearitas dan singularitas dapat dideteksi dari nilai determinan matriks kovarians. Determinan yang sangat kecil (*extremely small*) mengindikasikan adanya multikolinearitas dan singularitas (Tabachnick & Fidell. [1996]), sehingga data tidak dapat digunakan untuk analisis. Program amos 24 telah menyediakan fasilitas *warning* apabila terdapat indikasi multikolinearitas dan singularitas. Bila benar-benar terjadi *treatment* yang dapat diambil adalah mengeluarkan variabel yang menyebabkan terjadinya multikolinearitas dan singularitas, yang kemudian menciptakan sebuah *composite variable*.

f) Evaluasi atas kriteria goodness of fit

Model SEM akan menghasilkan angka parameter yang akan dibandingkan dengan *cut-off value* dari *goodness of fit,* perhatikan tabel berikut.

Tabel 1.5 *Goodness Of Fit Indices*

Goodness of Fit Indices	Cut – Off Value
X ² Chi Square	Diharapkan Kecil
Probabilitas	≥ 0,05
CMIN/DF	≤ 2,00
RMSEA	≤ 0,08
GFI	≥ 0,90
AGFI	≥ 0,90
TLI	≥ 0,95
CFI	≥ 0,95

g) Analisis direct efect, indirect efect dan total efect

Peneliti dapat menganalisis kekuatan hubungan/pengaruh antar konstruksi baik hubungan langsung, tidak langsung, maupun hubungan totalnya. Efek langsung (direct effect) adalah koefisien dari garis dengan anak panah satu ujung dan terjadi pada dua konstruksi yang dituju oleh garis anak panah satu arah. Efek tidak langsung (direct effect) adalah efek yang muncul melalui sebuah variabel dan terjadi pada dua konstruksi yang tidak dituju garis anak panah satu arah. Efek total (direct effect) adalah efek dari pelbagai hubungan yang merupakan gabungan antarefek langsung dan tidak langsung.

7. Langkah Ketujuh: Interpretasi dan Modifikasi Model

Estimasi model dilakukan apabila hasil model masih absurd, peneliti dapat melakukan modifikasi terhadap model yang dikembangkan apabila estimasi yang dihasilkan memiliki residual yang besar. Langka modifikasi hanya dapat dilakukan bila peneliti mempunyai justifikasi teoretis yang cukup kuat, sebab SEM bukan ditujukan untuk menghasilkan teori, tetapi menguji model yang mempunyai pijakan teori yang benar. Oleh karena itu, untuk memberikan interpretasi apakah model berbasis teori yang diuji dapat diterima langsung atau perlu pemodifikasian, maka peneliti perlu mengarahkan pada kekuatan prediksi dari model. Apabila pada $standardized\ residual\ covariances\ matrix\ terdapat\ nilai\ di\ luar\ ring\ -2,58 \le standardized\ residual \le 2,58\ dan\ probabilitas\ (P) < 0,05,\ maka\ model\ perlu\ dilakukan\ modifikasi,\ sehingga\ langkah\ praktik\ di\ lapangan\ sesuai$

dengan langkah-langkah yang seharusnya dilakukan.

Membuat model yang baik dapat dilakukan melalui indeks modifikasi. Indeks ini dapat menjadi pedoman untuk menerapi model. Menerapi model dapat dilakukan dengan cara memperhatikan indeks modifikasi (MI), nilai terbesar, dan landasan teori yang kuat. Kemudian, dapat dipilih untuk mengkorelasikan/meregresikan. Langkah estimasi proses akan terjadi pengecilan nilai chi-square (X2) dan nilai probabilitas menjadi signifikan. Pada program amos 24, indeks modifikasi dicantumkan dalam output structural equation modeling, sehingga peneliti dapat memilih koefisien yang akan diestimasi. Apabila nilai chi-square (X²) belum signifikan, peneliti dapat mencari nilai MI terbesar. Selanjutnnya peneliti mengambil informasi dari MI dengan melakukan trail covariances dan regression weights secara menyeluruh. Proses tersebut diyakini akan menghasilkan hasil yang baik. Solusinya, peneliti dapat memilih MI terbesar dan menguatkan teori yang digunakan sampai cut-off value sesuai dengan yang diharapkan.

VALIDITAS DAN RELIABILITAS

Peneliti dapat mengukur validitas dan reliabilitas data yang digunakan menggunakan model validitas konvergen dan diskriminan. Telah dijelaskan sebelumnya bahwa kedua validitas dihasilkan dari *structural model*. Validitas berasal dari kata *validity* yang mempunyai arti sejauh mana ketepatan dan kecermatan suatu alat ukur dalam melakukan fungsi ukurnya.

Validitas

Validitas adalah suatu ukuran yang menunjukkan bahwa variabel yang diukur benar-benar variabel yang hendak diteliti (Cooper dan Schindler, dalam Zulganef, 2006). Menurut Sugiharto dan Sitinjak (2006), validitas berhubungan dengan sesuatu yang diukur. Validitas dalam penelitian menyatakan derajat ketepatan alat ukur penelitian terhadap isi yang diukur. Uji validitas digunakan untuk menunjukkan sejauh mana alat ukur dapat mengukur sesuatu. Ghozali (2013) menyatakan bahwa uji validitas digunakan untuk mengukur valid atau tidaknya suatu kuesioner. Kuesioner dikatakan valid apabila pertanyaannya mampu mengungkapkan sesuatu yang akan diukur peneliti.

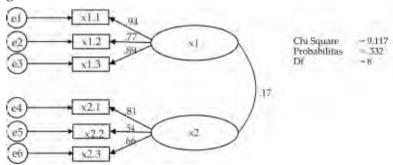
Suatu tes dapat dikatakan memiliki validitas yang tinggi jika tes mampu menginterpretasikan hasil yang akurat sesuai dengan maksud kriteria penelitian. Tes akan menghasilkan data yang tidak relevan jika tujuannya ialah menunjukkan validitas yang rendah.

Validitas merupakan aspek kecermatan pengukuran. Suatu alat ukur yang valid dapat menjalankan fungsi ukurnya dengan tepat, juga memiliki kecermatan tinggi. Kecermatan yang dimaksudkan adalah dapat mendeteksi perbedaan-perbedaan kecil yang ada pada atribut yang diukurnya.

Pengujian validitas terhadap kuesioner dibedakan menjadi 2, yaitu validitas faktor dan validitas item. Validitas faktor diukur bila item yang disusun menggunakan lebih dari satu faktor (antara faktor satu dengan yang lain ada kesamaan). Pengukuran validitas faktor dilakukan dengan cara mengkorelasikan antara skor faktor (penjumlahan item dalam satu faktor) dengan skor total faktor (total keseluruhan faktor).

Validitas item ditunjukkan dengan adanya korelasi atau dukungan terhadap item total (skor total), perhitungan dilakukan dengan cara mengkorelasikan antara skor item dengan skor total item. Bila peneliti menggunakan lebih dari satu faktor, maka uji validitas item dilakukan dengan cara mengkorelasikan antara skor item dengan skor faktor. Kemudian, dapat dilanjutkan dengan mengkorelasikan antara skor item dengan skor total faktor (penjumlahan dari beberapa faktor).

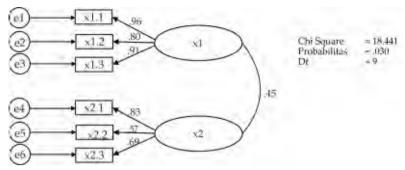
Dari hasil perhitungan korelasi, didapatkan suatu koefisien korelasi yang digunakan untuk mengukur tingkat validitas suatu item dapat menentukan apakah item tersebut layak digunakan atau tidak. Penentuan layak atau tidaknya suatu item yang akan digunakan, biasanya dilakukan uji signifikansi koefisien korelasi pada taraf signifikansi 0,05, artinya suatu item dianggap valid jika berkorelasi signifikan terhadap skor total.


Analisis ini dilakukan dengan cara mengorelasikan masingmasing skor item dengan skor total. Skor total adalah penjumlahan dari keseluruhan item. Item-item pertanyaan yang berkorelasi signifikan dengan skor total menunjukkan item-item tersebut mampu memberikan dukungan dan mengungkap data. Jika r hitung $\geq r$ tabel (uji 2 sisi dengan sig 0,05) maka instrumen atau item-item pertanyaan berkorelasi signifikan terhadap skor total (dinyatakan valid).

a. Validitas Konvergen

Validitas konvergen diukur dengan menentukan apakah setiap indikator yang diestimasi secara valid dapat mengukur dimensi. Sebuah indikator menunjukkan validitas konvergen yang signifikan apabila koefisien variabel indikator labih besar dari dua kali standar *error*-nya (C.R > 2.SE). Apabila setiap indikator memiliki *critical ratio* (C.R) lebih besar dari dua kali standar *error*-nya, maka indikator secara valid mengukur dapat mengukur model.

b. Validitas Diskriminan


Validitas diskriminan dilakukan untuk menguji apakah dua atau lebih konstruksi yang diuji merupakan sebuah konstruksi yang independen (bebas). Hal itu dapat dilakukan dengan memberikan constraint pada parameter korelasi antarkedua konstruksi yang diestimasi (Φij) sebesar 1,0. Selanjutnya, dapat dilakukan perbandingan antara chi-square yang diperoleh dari model yang di-constraint dengan chi-square dari model yang tidak di-constraint. Validitas diskriminan dilakukan secara terpisah yaitu antara konstruksi eksogen dengan konstruksi eksogen atau antara konstruksi endogen dengan konstruksi endogen. Gambar di bawah ini merupakan contoh melakukan validitas diskriminan. Uji validitas diskriminan dapat dilakukan dengan menguji dua konstruksi dengan melihat angka korelasinya. Hubungan kausalitas antardua variabel terjadi bila kedua variabel mempunyai hubungan atau angka korelasi antardua variabel tersebut signifikan/besar. Sedangkan, antarvariabel independen tidak harus mempunyai hubungan atau angka korelasi yang kecil/ tidak signifikan.

Gambar 1.9 Model tidak di-constraint (free model)

Model yang tidak di-*constraint* menghasilkan parameter berikut.

Chi-square = 9,117 Probabilitas = 0,332 Degrees of freedom = 8

Gambar 1.10 Model di-constraint

Model yang di-*constraint* menghasilkan parameter sebagai berikut.

Chi-square = 18,441 Probabilitas = 0,030 Degrees of freedom = 9

Nilai *chi-square* yang lebih rendah dan nilai yang tidak di-*constraint* (*free model*) menunjukkan kedua konstruksi tidak berkorelasi secara sempurna. Hal ini dikarenakan validitas diskriminan dapat dicapai (lihat gambar 1.9 dan 1.10).

Reliabilitas

Setelah kesesuaian model diuji dan validitas diukur, evaluasi lain yang harus dilakukan adalah penilaian unidimensionalitas dan reliabilitas. Reliabilitas adalah ukuran mengenai konsistensi internal dari indikator-indikator sebuah konstruksi yang menunjukkan derajat yang masing-masing indikatornya mengindikasi konstruksi umum. Maksudnya, hal-hal yang spesifik tersebut saling membantu dalam menjelaskan sebuah fenomena yang umum. Reliabilitas berasal dari kata reliability. Reliability (reliabilitas) adalah keajegan pengukuran (Walizer, 1987). Sugiharto dan Situnjak (2006) menyatakan bahwa reliabilitas merujuk pada instrumen yang digunakan sebagai alat pengumpulan data yang mampu mengungkapkan informasi sesuai fakta di lapangan. Ghozali (2013) menyatakan bahwa reliabilitas adalah alat untuk mengukur kuesioner yang merupakan indikator suatu konstruksi. Suatu kuesioner dikatakan reliabel jika jawaban seseorang terhadap pernyataan konsisten atau stabil dari waktu ke waktu. Reliabilitas suatu tes merujuk pada derajat stabilitas, konsistensi, daya prediksi, dan akurasi. Pengukuran reliabilitas tinggi adalah pengukuran yang dapat menghasilkan data yang reliabel. Menurut Masri Singarimbun (1995), realibilitas adalah indeks yang menunjukkan sejauh mana suatu alat ukur dapat dipercaya atau dapat diandalkan. Bila suatu alat pengukur digunakan dua kali–untuk mengukur gejala yang sama dan hasil pengukuran yang diperoleh relatif konsisten, maka alat pengukur tersebut reliabel. Menurut Sumadi Suryabrata (2004), reliabilitas menunjukkan sejauh mana hasil pengukuran dengan alat tersebut dapat dipercaya. Hasil pengukuran harus reliabel dalam artian harus memiliki tingkat konsistensi dan kemantapan. Dengan kata lain, realibitas menunjukkan konsistensi suatu alat pengukur di dalam pengukur gejala yang sama.

Reliabilitas tidak sama dengan validitas. Artinya pengukuran yang dapat diandalkan akan mengukur secara konsisten, tetapi belum tentu mengukur apa yang seharusnya diukur (valid). Di dalam penelitian, reliabilitas menunjukkan sejauh mana pengukuran dari suatu tes tetap konsisten setelah dilakukan berulang-ulang terhadap subjek dalam kondisi yang sama. Penelitian dianggap dapat diandalkan jika memberikan hasil yang konsisten untuk pengukuran yang sama. Sedangkan, penelitian yang tidak bisa diandalkan jika pengukuran yang berulang memberikan hasil yang berbeda-beda.

Tinggi rendahnya reliabilitas secara empirik ditunjukan oleh angka yang disebut nilai koefisien reliabilitas. Reliabilitas yang tinggi ditunjukan dengan nilai rxx mendekati angka 1. Secara umum reliabilitas dianggap dianggap cukup memuaskan jika ≥ 0.700 .

Pendapat lain menyatakan jika nilai *alpha* > 0.7, rtinya reliabilitas mencukupi (*sufficient reliability*), sementara jika *alpha* > 0.80 akan menyugestikan seluruh item reliabel, kemudian seluruh tes secara konsisten memiliki reliabilitas yang kuat. Sementara itu, pendapat lain juga mengatakan jika *alpha* > 0.90 maka menghasilkan reliabilitas yang sempurna. Jika *alpha* berada di antara 0.70—0.90 maka reliabilitasnya tinggi. Kemudian, jika *alpha* berada di antara 0.50–0.70 maka reliabilitasnya moderat. Jika di antara *alpha* < 0.50 maka reliabilitas rendah. Jika *alpha* yang dihasilkan rendah, kemungkinan ada beberapa item yang tidak reliabel.

Penggunaan ukuran reliabilitas seperti α -cronbach tidak mengukur unidimensionalitas melainkan unidimensionalitas itu sudah ada pada saat α -cronbach dihitung. Dalam teknik SEM, reliabilitas konstruksi dinilai dengan menghitung indeks reliabilitas instrumen yang digunakan dari model. Rumus yang digunakan untuk menghitung reliabilitas konstruksi adalah sebagai berikut.

Construct Reliability =
$$\frac{(\sum Std.Loading)^2}{(\sum Std.Loading)^2 + \sum \varepsilon_i}$$

Di mana

- a. Std. Loading diperoleh langsung dari standardized loading untuk tiap indikator (diambil dari perhitungan komputer AMOS 24) yaitu nilai lambda yang dihasilkan oleh masingmasing indikator.
- b. ε_{φ} adalah *measurement error* dari tiap indikator. *Measurement error* yang memiliki nilai sama dengan 1-reliabilitas indikatornya yaitu pangkat dua dari *standardized loading* setiap indikator yang dianalisis.

Nilai batas yang digunakan untuk menilai tingkat reliabilitas sebesar 0,70, walaupun angka tersebut bukanlah sebuah ukuran yang "mati". Maksudnya, jika penelitian bersifat eksploratori maka nilai di bawah 0,70 pun masih dapat diterima apabila disertai dengan alasan empirik. Nunally dan Bernstein (1994) menyatakan bahwa dalam penelitian eksploratori, reliabilitas antara 0,5—0,6 sudah dapat diterima.

POST TEST

- 1. Apa yang Anda ketahui tentang konsep dasar SEM?
- 2. Apa perbedaan SEM dengan SPSS?
- 3. Buat langkah-langkah pemodelan SEM?

DAFTAR PUSTAKA

- Ferdinand, A. (2002). Structural Equation Modeling Dalam Penelitian Manajemen, Edisi Kedua. Semarang: B. P. UNDIP Semarang.
- _____. (2004). Structural Equation Modeling Dalam Penelitian Manajemen, Edisi Ketiga. Semarang: B. P. UNDIP Semarang.
- Gozali, M. (2013). Analisis Hubungan Antara Situational Awareness dengan Perilaku Singarimbun.
- Hair. (1995). *Multivariate Data Analysis Pearson.* edisi pertama. Kennesaw State University: Kennesaw.
- ______. (2006). *Multivariate Data Analysis Pearson.* edisi keenam. Kennesaw State University: Kennesaw.
- Masri. (1995). Metode Penelitian Survei. Semarang: IKIP Semarang Press.
- Suryabrata, Sumadi. (2004). *Psikologi Pendidikan*. Jakarta: PT Rajagrafindo Persada.
- Walizer, Michael. (1987). *Metode dan Analisis Penelitian*. Jakarta: Erlangga.
- Waluyo, Minto. (2009). Panduan dan Aplikasi SEM untuk Aplikasi Model dalam Penelitian Teknik Industri & Manajemen. Jakarta: Penerbit Indek.

BAB 2 KORELASI DAN REGRESI

KORELASI

Penyelesaian penelitian tool SEM menggunakan dua metode, yakni korelasi dan regresi. Measurement model fokus membahas korelasi dan structural model membahas metode regresi. Selain itu, terdapat modifikasi model yang serupa dengan structural model. Modifikasi model ini diterbitkan hanya untuk mencari kiat-kiat agar menjadikan model lebih baik sekaligus mencari solusi dalam mengaplikasikannya di lapangan.

Korelasi merupakan analisis dalam statistik untuk mencari hubungan antara dua variabel yang bersifat kuantitatif. Analisis korelasi merupakan studi pembahasan mengenai derajat hubungan antardua variabel, misalnya variabel X dan variabel Y. Pengertian korelasi yang lebih spesifik adalah mengisyaratkan hubungan yang bersifat substantif numerik (angka/bilangan). Definisi ini, sekaligus memperlihatkan bahwa tujuan dari analisis korelasi adalah untuk melihat/menentukan seberapa erat hubungan antardua variabel.

Salah satu contoh dalam penelitian, seorang peneliti berusaha mengungkapkan hubungan antara beberapa besaran (variabel). Variabel X dan Y dinyatakan memiliki korelasi jika X dan Y memiliki perubahan variasi satu sama lain, artinya jika variabel X berubah, variabel Y pun berubah. Jika variabel X merupakan sebuah variabel yang bersifat menerangkan tingkah laku variabel Y, variabel X disebut variabel bebas (*independent variable*). Jika tingkah laku variabel Y diterangkan variabel X, variabel Y disebut variabel tidak bebas (*dependet variable*). Variabel bebas disebut juga penyebab, sedangkan variabel tidak bebas disebut akibat. Pembahasan akan lebih difokuskan pada SEM keluaran variabel bebas yang umumnya disebut variabel eksogen dan variable terikat disebut endogen. Variabel endogennya bisa lebih dari satu. (Y₁, Y₂, ...).

Secara sederhana, korelasi dapat diartikan sebagai hubungan. Ketika dikembangkan lebih jauh korelasi tidak hanya sebatas pengertian tersebut, melainkan satu teknik analisis dalam statistik yang digunakan untuk mencari hubungan antardua variabel yang bersifat kuantitatif. Hubungan dua variabel tersebut dapat terjadi karena adanya hubungan sebab akibat atau dapat pula terjadi karena kebetulan. Dua variabel dikatakan berkolerasi apabila perubahan pada variabel satu diikuti perubahan variabel yang lain secara teratur dengan arah yang sama (korelasi positif) atau berlawanan (korelasi negatif).

Dalam satistik, korelasi merupakan ukuran dari seberapa dekat dua variabel berubah dalam hubungan satu sama lain. Sebagai contoh, kita bisa menggunakan tinggi badan dan usia siswa SD sebagai variabel dalam korelasi positif. Semakin tua usia siswa SD, maka tinggi badannya pun menjadi semakin tinggi. Hubungan ini disebut korelasi positif, karena kedua variabel mengalami perubahan ke arah yang sama, yakni semakin meningkatnya usia, maka tinggi badan pun ikut meningkat.

Sementara itu, kita bisa menggunakan nilai dan tingkat absensi siswa sebagai contoh dalam korelasi negatif. Semakin tinggi tingkat absensi siswa, maka nilai yang diperolehnya cenderung semakin rendah. Hubungan ini disebut korelasi negatif, karena kedua variabel mengalami perubahan ke arah yang berlawanan dengan meningkatnya tingkat absensi siswa, maka nilai ikut menurun.

Kedua variabel yang dibandingkan dibedakan menjadi variabel independen/eksogen dan variabel dependen/endogen. Sesuai dengan namanya, variabel independen adalah variabel yang perubahannya cenderung di luar kendali manusia. Sementara itu, variabel dependen adalah variabel yang dapat berubah sebagai akibat dari perubahan variabel babas/eksogen. Hubungan ini dapat diilustrasikan dengan pertumbuhan tanaman yaitu variabel sinar matahari dan tinggi tanaman. Sinar matahari merupakan variabel independen karena intensitas cahaya yang dihasilkan oleh matahari tidak dapat diatur oleh manusia. Sedangkan tinggi tanaman merupakan variabel dependen karena perubahan tinggi tanaman dipengaruhi langsung oleh intensitas cahaya matahari sebagai variabel eksogen.

MACAM-MACAM KORELASI

Menurut tingkatannya, korelasi analisis memiliki pelbagai jenis. Beberapa tingkatan korelasi yang telah dikenal, yakni korelasi sederhana, parsial, dan ganda. Berikut akan dijelakan mengenai cara

menghitung dari masing-masing korelasinya.

a. Korelasi Sederhana

Korelasi sederhana merupakan teknik statistik yang digunakan untuk mengukur kekuatan hubungan antardua variabel. Korelasi ini berfungsi untuk mengetahui bentuk hubungan keduanya dengan hasil yang bersifat kuantitatif. Kekuatan hubungan antardua variabel yang dimaksud hubungan erat, lemah, atau renggang. Bentuk hubungannya adalah korelasi linear positif atau linear negatif.

Di antara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu korelasi pearson product moment dan korelasi rank spearman. Korelasi pearson product moment adalah korelasi yang digunakan untuk data kontinu dan diskret. Korelasi pearson cocok digunakan untuk statistik parametrik. Ketika data berjumlah besar dan memiliki ukuran parameter seperti mean dan standar deviasi populasi.

Korelasi *pearson* dihitung dengan menggunakan variasi data. Keragaman data dapat menunjukkan korelasinya. Korelasi ini menghitung data apa adanya, tidak membuat *ranking* atas data yang digunakan seperti pada korelasi *rank spearman*. Ketika memiliki data numerik seperti nilai tukar rupiah data rasio keuangan, tingkat pertumbuhan ekonomi, data berat badan, dan contoh data numerik lainnya, maka korelasi *pearson product moment* tepat untuk digunakan. Data berdistribusi normal, korelasinya memerlukan uji normalitas.

Sebaliknya, koefisien korelasi *rank spearman* digunakan untuk data diskret dan kontinu namun untuk statistik nonparametrik. Statistik nonparametrik adalah statistik yang digunakan ketika data tidak memiliki informasi parameter, tidak berdistribusi normal atau data diukur dalam bentuk *ranking*. Berbeda dengan korelasi *pearson*, korelasi ini tidak memerlukan asumsi normalitas, maka korelasi *rank spearman* tepat digunakan untuk data dengan sampel kecil.

Korelasi *rank spearman* menghitung korelasi dengan *ranking* data terlebih dahulu. Artinya korelasi dihitung berdasarkan orde data. Ketika peneliti berhadapan dengan kategori data pekerjaan, tingkat pendidikan, kelompok usia, dan contoh data ketegori lainnya, maka tepat menggunakan korelasi *rank spearman*. Korelasi *rank spearman* pun sesuai jika digunakan peneliti

untuk menghadapi data numerik (kurs rupiah, rasio keuangan, pertumbuhan ekonomi), namun peneliti tidak memiliki cukup banyak data (data kurang dari 30).

b. Korelasi Parsial

Korelasi parsial merupakan metode korelasi antarvariabel bebas dan variabel terikat dengan mengontrol salah satu variabel bebas untuk melihat korelasi natural antaravariabel yang tidak terkontrol. Analisis korelasi parsial (partial correlation) melibatkan dua variabel. Satu buah variabel yang dianggap berpengaruh akan dikendalikan atau dibuat tetap (sebagai variabel kontrol).

Contoh yang dapat diambil, jika kita akan meneliti hubungan variabel X_2 dan variabel bebas Y, dengan X1 dikontrol (korelasi parsial). Variabel yang dikontrol (X1) dikeluarkan atau dibuat konstan. Sehingga $X_2' = X_2 - (b_2 X_1 + a2)$ dan $Y' = Y - (b1 X_1 + a1)$, tetapi nilai a dan b didapatkan dengan menggunakan regresi linear. Setelah hasilnya diperoleh, peneliti dapat mencari regresi X_2' dengan Y' di mana: $Y' = b3X_2' + a3$. Korelasi yang didapatkan dan sejalan dengan model-model di atas dinamakan korelasi parsial X_2 dan Y, sedangkan X_1 dibuat konstan.

Nilai korelasi berkisar antara 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat. Sebaliknya, jika nilai mendekati 0 berarti hubungan antara dua variabel semakin lemah. Nilai positif menunjukkan hubungan searah (X naik, maka Y naik) sementara nilai negatif menunjukkan hubungan terbalik (X naik, maka Y turun).

Data yang digunakan dalam korelasi parsial biasanya memiliki skala interval atau rasio. Di bawa ini akan dipaparkan pedoman untuk memberikan interpretasi serta analisis bagi koefisien korelasi menurut Sugiyono.

Tabel.2.1 Pedoman untuk Memberikan Interpretasi serta Analisis Bagi Koefisien Korelasi

Nilai koefisien korelasi	Keteranagn		
0.00 - 0,199	sangat rendah		
0,20 - 0,2599	rendah		
0,26 - 0,4000	sedang		
0,41 - 0,6999	kuat		
0,70 – 0,9999	sangat kuat		

c. Korelasi Ganda

Korelasi ganda adalah bentuk korelasi yang digunakan untuk melihat hubungan antara tiga atau lebih variabel (dua atau lebih variabel independen dan satu variabel dependen). Korelasi ganda berkaitan dengan interkorelasi variabel-variabel independen sebagaimana korelasinya dengan variabel dependen. Korelasi ganda adalah suatu nilai yang memberikan pengaruh antarhubungan dua variabel atau lebih secara bersama-sama dengan variabel lain. Korelasi ganda merupakan korelasi yang terdiri dari dua atau lebih variabel bebas $(X_1, X_2, ..., X_n)$ serta satu variabel terikat (Y). Apabila perumusan masalahnya terdiri dari tiga masalah, maka hubungan antara masing-masing variabel dilakukan dengan cara perhitungan korelasi sederhana.

Korelasi ganda memiliki koefisien korelasi, yakni besar kecilnya hubungan antara dua variabel yang dinyatakan dalam bilangan. Koefisien korelasi disimbolkan dengan huruf R. besarnya koefisien korelasi adalah antara -1; 0; dan +1.

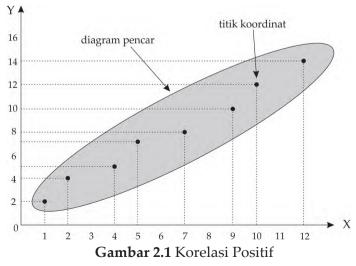
Besarnya korelasi -1 adalah negatif sempurna, yakni terdapat hubungan di antara dua variabel atau lebih namun, arahnya terbalik, +1 yang artinya memiliki korelasi positif sempurna (sangat kuat). Hal tersebut menjelaskan bahwa terdapat hubungan antardua variabel atau lebih, sedangkan koefisien korelasi 0 dianggap tidak memiliki hubungan antardua variabel atau lebih yang diuji sehingga.

Apa yang harus kita persiapkan ketika kita ingin menjual suatu produk atau jasa? Kita harus mempunyai trik-trik jitu agar calon konsumen tertarik dan ingin membeli produk atau jasa yang kita tawarkan. Apabila dari awal calon konsumen tidak tertarik dengan produk atau jasa yang kita tawarkan, bagaimana mereka mau membeli? Bagaimana mereka percaya terhadap produk atau jasa tersebut? Untuk menjawab pelbagai macam pertanyaan tersebut, Anda harus mempersiapkan sebuah "presentasi penjualan".

Presentasi penjualan harus disiapkan secara tepat agar target yang menjadi sasaran berkenan membeli produk atau jasa tersebut. Presentasi ini begitu penting dan menjadi permulaan yang akan menentukan hasil akhir Anda. Presentasi penjualan kali ini dikemas dalam konsep "stand up selling". Stand up selling mengajarkan bagaimana cara membuka presentasi

yang menarik, mengetahui permasalahan calon konsumen, memberikan solusi, dan membuat calon konsumen membeli produk atau jasa yang ditawarkan.

Hubungan Antarvariabel

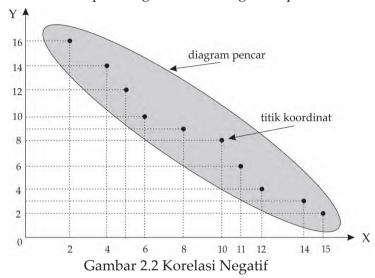

Suatu korelasi yang terjadi antardua variabel tidak selamanya berupa penambahan nilai variabel Y, jika variabel X bertambah maka disebut sebagai korelasi positif. Kadangkala ditemukan suatu hubungan yang satu nilai variabel bertambah dan variabel lainnya justru berkurang. Hubungan ini disebut sebagai korelasi negatif. Tidak hanya korelasi positif dan negatif, namun terkadang ditemukan kasus di mana hubungan antarvariabel sangat lemah bahkan tidak ditemukan korelasi.

a. Korelasi Positif

Korelasi positif merupakan hubungan antara variabel X dan Y yang ditunjukan dengan hubungan sebab akibat apabila terjadi penambahan nilai pada variabel X, maka akan diikuti terjadinya penambahan nilai variabel Y.

Contoh korelasi positif

- a) dalam pertanian, jika dilakukan penambahan pupuk (X), maka produksi padi akan meningkat (Y);
- b) tentu saja semakain tinggi badan (X) seorang anak, maka berat badannya akan bertambah pula (Y); dan
- c) demakin luas lahan yang ditanami coklat (X), maka produksi coklat akan meningkat (Gambar 2.1).

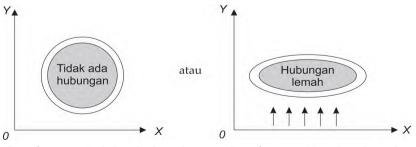


b. Korelasi Negatif

Jika korelasi positif diinterpretasikan dengan peningkatan nilai X yang akan diikuti penambahan nilai Y, maka korelasi negatif berlaku sebaliknya. Jika nilai variabel X, maka nilai variabel Y justru mengalami penurunan (lihat gambar 2.2).

Contoh korelasi negatif

Apabila harga barang (X) meningkat, maka kemungkinan permintaan terhadap barang tersebut mengalami penurunan.



c. Tidak Ada Korelasi atau Korelasi Sangat Lemah

Korelasi ini terjadi apabila kedua variabel (X dan Y) tidak menunjukkan adanya hubungan linear

Contoh

Panjang rambut (X) dengan tinggi badan (tidak bisa dihitung hubungannya atau tidak ada hubungannya). Korelasi/hubungan lemah variable Y tidak ada peningkatan (stagnan).

Gambar 2.3 Tidak ada korelasi

Gambar 2.4 Korelasi lemah

d. Korelasi Sempurna

Korelasi sempurna biasanya terjadi apabila kenaikan/ penurunan variabel X yang selalu sebanding dengan variabel Y. Jika digambarkan dengan diagram titik atau diagram pencar, titik-titik berderet membentuk satu garis lurus dan hampir tidak ada pencaran.

Besar hubungan antara variabel bebas dan variabel terikat biasanya diukur dengan koefisien korelasi.

Simbolnya yaitu

Q = koefisien korelasi populasi

r = koefisien korelasi sampel

Nilai koefisien korelasi berada dalam selang -1 s.d +1 jika koefisien korelasi bernilai 0 (nol). Hal tersebut menandakan tidak adanya hubungan antarkedua variabel. Jika koefisien korelasi bernilai negatif, maka hubungan antara kedua variabel tersebut negatif atau saling berbanding terbalik. Sedangkan, jika koefisien korelasi bernilai positif, maka hubungan antarkedua variabel tersebut positif atau saling berbanding lurus

Catatan

Jika variabel 1 dan 2 bebas maka r = 0, tetapi jika r = 0 belum tentu saling bebas, kemungkinan variabel tersebut tidak saling bebas, tetapi tidak berhubungan. Korelasi tidak bisa digunakan untuk melihat hubungan kausalitas.

CARA MENGETAHUI ADA TIDAKNYA KORELASI

Teknik untuk mengetahui ada atau tidaknya korelasi antara dua variabel dapat dilakukan melalui beberapa cara yaitu membuat diagram pencar dan menghitung koefisien korelasi.

a. Diagram Pencar (Scatter Plot)

Diagram pencar berfungsi untuk menunjukkan ada dan tidaknya hubungan (korelasi) antara dua variabel (X dan Y). Peneliti dapat menggunakan diagram pencar. Diagram pencar adalah sebaran nilai-nilai dari variabel-variabel pada sumbu X dan Y. Diagram pencar bertujuan untuk mengetahui apakah titik-titik koordinat pada sumbu X dan Y, seperti pola yang terbentuk dari sebaran tersebut.

Diagram pencar dapat diilustrasikan dengan garis yang sekiranya dapat membagi dua titik koordinat pada kedua sisi

garis. Dari garis tersebut dapat diketahui korelasi antara kedua variabel. Jika garis mengarah ke atas, maka akan membentuk korelasi positif, tetapi jika arah garis menurun maka yang dibentuk adalah korelasi negatif. Sebaliknya, jika tidak dapat diilustrasikan ke dalam garis, maka hal tersebut menandakan tidak adanya korelasi. Selain itu, jika garis dapat melalui titik-titik dengan tepat, maka dapat menghasilkan korelasi sempurna.

Manfaat Diagram Pencar

- a. Membantu menunjukkan apakah terdapat hubungan yang bermanfaat antara dua variabel.
- b. Membantu menetapkan tipe persamaan yang menunjukkan hubungan antara dua variabel.

Pelbagai Bentuk Diagram Pencar

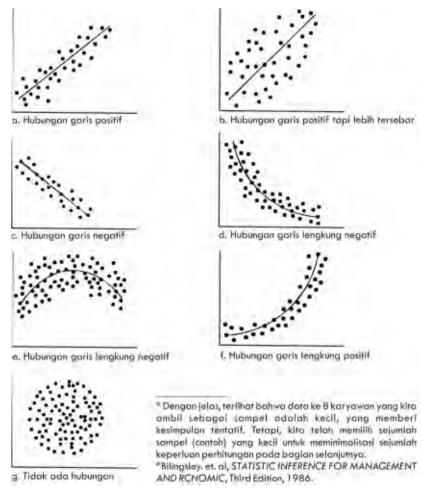
Koefisien Korelasi

Koefisien korelasi berfungsi untuk mengetahui ada dan tidaknya hubungan antarkedua variabel (X dan Y), serta seberapa erat hubungan tersebut. Hal tersebut dapat diketahui dengan menghitung koefisien korelasi dari kedua variabel. Jika koefisien korelasi bertanda positif (+), maka hubungan kedua variabel positif. Begitu pula sebaliknya jika koefisien korelasi bertanda negatif (-).

b. Koefisien Korelasi Pearson

Apabila antardua variabel (X dan Y) masing-masing mempunyai skala pengukuran minimal interval (*ratio*) dan hubungan linear, maka keeratan hubungan kedua variabel dapat dihitung dengan menggunakan formula korelasi *pearson*. Sampel disimbolkan dengan *ryx* dan *rxy*, sedangkan populasi *pyx* dan *pxy*.

Berikut adalah koefisien *pearson* antardua variabel jika datanya tidak berkelompok.


- a. Koefisien korelasi *rank spearman* digunakan untuk mengukur keeratan hubungan antarvariabel X dan Y. Minimal kedua variabel memiliki skala penghitungan ordinal dengan menggunakan korelasi *spearman*;
- b. Koefisien korelasi rank spearman (ordinal); dan
- c. Koefisien korelasi *spearman* antara X dan Y atau Y dan X.

Jika Tidak Memiliki Data Kembar

Apabila peneliti tidak memiliki data kembar, maka Anda dapat menggunakan rumus berikut.

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

d_i = selisih *ranking* variabel X dan Y n = banyaknya data

Gambar 2.5 Bentuk Diagram Pencar

Jika Memiliki Data Kembar

$$r = \frac{(n^3 - n) - 6\sum_{i=1}^{n} d_i^2 - \frac{T_x + T_y}{2}}{\sqrt{(n^3 - n)^2 (T_x + T_y)(n^3 - n) + T_x + T_y}}$$

Jika dalam kelompok data terdapat data kembar maka formula di atas tidak dapat digunakan. Peneliti dapat menggunakan formula di bawah ini.

Catatan:

Urutkan nilai observasi dan berilah *ranking* dari besar ke kecil. Rumus data berkelompok adalah sebagai berikut.

$$r = \frac{n(\sum uvf) - (\sum uf_u)(\sum vf_v)}{\sqrt{n(\sum u^2f_u) - (\sum uf_u)^2 \times n(\sum v^2f_v) - (\sum vf_v)^2}}$$

di mana

u = skala baru dari X

v = skala baru dari y

f = frekuensi untuk tiap sel

fu = frekuensi untuk u pada suatu nilai v

fv = frekuensi untuk v pada suatu nilai u

Koefisien Korelasi Kualitatif

Koefisien korelasi yang menggunakan data kualitatif dapat dihitung menggunakan *contingent coefficient* dengan rumus di bawah ini.

$$Cc=\sqrt{rac{\chi^2}{\chi^2+n}}; \chi^2=Chis-quare$$

KORELASI PEARSON PRODUCT MOMENT

Korelasi *pearson* atau korelasi *product moment* (KPM) merupakan alat uji statistik yang digunakan untuk menguji hipotesis asosiatif (uji hubungan) dua variabel data berskala interval atau rasio. KPM dikembangkan oleh Karl Pearson (Hasan, [1999]). KPM merupakan salah satu bentuk statistik parametris, karena menguji data pada skala interval atau rasio. Oleh karena itu, terdapat beberapa persyaratan untuk menggunakan KPM, yaitu

- a. sampel diambil dengan teknik random (acak);
- b. data yang akan diuji harus homogeny;
- c. data yang akan diuji harus berdistribusi normal; dan
- d. data yang akan diuji bersifat linier.

Salah satu fungsi KPM sebagai statistik inferensi adalah untuk menguji kemampuan generalisasi (signifikasi) hasil penelitian. Syarat untuk mengaplikasikan KPM yaitu dengan menggunakan statistik parameteris. Persyaratan lainnya ialah dengan menggunakan variabel independen (X) dan variabel (Y) berada pada skala interval atau rasio.

Nilai KPM disimbolkan dengan r (\it{rho}). Nilai tersebut berada di antara -1 < r < 1. Bila nilai r = 0, artinya tidak memiliki korelasi atau tidak memiliki hubungan anatarvariabel independen dan dependen. Nilai r = +1 menjelaskan bahwa terdapat hubungan positif antarvariabel independen dan dependen. Sebaliknya, nilai r = -1 menjelaskan bahwa terdapat hubungan negatif antarvariabel independen dan dependen. Dengan kata lain, tanda "+" dan "-" menunjukkan arah hubungan di antara variabel yang sedang diopersionalkan.

Uji signifikansi KPM menggunakan uji t, sehingga nilai t hitung dibandingkan dengan nilai t tabel. Kekuatan hubungan antarvariabel ditunjukkan melalui nilai korelasi. Peneliti dapat mengambil kesimpulan dengan ketentuan sebagai berikut.

- a. Bila *t* hitung > *t* tabel, maka *rxy* adalah signifikan.
- b. Bila *t* hitung < *t* tabel, maka *rxy* adalah tidak signifikan.

Uji Pearson Product Moment dan Asumsi Klasik

Uji pearson product moment merupakan salah satu jenis uji korelasi yang digunakan untuk mengetahui derajat keeratan hubungan dua variabel yang berskala interval atau rasio. Uji ini akan mengembalikan nilai koefisien korelasi yang nilainya berkisar antara -1,0 dan 1. Nilai -1 artinya terdapat korelasi negatif yang sempurna. Sedangka, nilai 0 menjelaskan tidak ada korelasi. Maka, dapat disimpulkan bahwa nilai 1 menunjukkan adanya korelasi positif sempurna.

Pengujian reliabilitas instrumen dengan menggunakan rumus *alpha cronbach*, karena instrumen penelitian ini berbentuk angket dan skala bertingkat. Jika *alpha* rendah, kemungkinan satu atau beberapa item tidak reliabel.

REGRESI

Regresi merupakan alat ukur yang digunakan untuk mengukur ada atau tidaknya korelasi antarvariabel. Jika peneliti memiliki dua variabel atau lebih maka, kita bisa mempelajari bagaimana setiap variabel itu berhubungan atau dapat diramalkan.

Analisis regresi mempelajari hubungan yang diperoleh dan dinyatakan dalam persamaan matematika yang menyatakan hubungan fungsional antara variabel-variabel. Hubungan fungsional antarsatu variabel prediktor dengan satu variabel kriterium disebut analisis regresi sederhana (tunggal), sedangkan hubungan fungsional yang lebih dari satu variabel disebut analisis regresi ganda.

Analisis regresi lebih akurat saat melakukan korelasi, karena pada analisis itu terjadi kesulitan dalam menunjukkan *slop* (tingkat perubahan suatu variabel terhadap variabel lainnya dapat ditentukan). Dengan demikian, melalui analisis regresi peramalan nilai variabel terikat pada nilai variabel bebas lebih akurat pula.

a. Persamaan Regresi Linier dari Y terhadap X

Persamaan regresi linier dari Y terhadap X dirumuskan sebagai berikut

$$Y = a + b X$$

Keterangan:

Y = variabel terikat

X = variabel bebas

a = intersep

b = koefisien regresi/slop

Persamaan nilai a dan b dapat ditentukan dengan cara sebagai berikut.

1. Rumus Regresi Sederhana

Contoh latihan soal

Berikut ini adalah data pengalaman kerja dan omzet penjualan dari 8 marketing pada PT ABC.

- 1. Tentukan nilai a dan b!
- 2. Buatkan persamaan garis regresinya!
- 3. Berapa perkiraan omzet penjualan dari seorang marketing yang memiliki pengalaman kerjanya 3,5 tahun?

Penyelesaian

Tabel penolong regresi linier sederhana

- Dijawab 1. Nilai a = 3,25 dan b = 1,25
- 2. Persamaan regresi liniernya adalah

$$Y = a + bX$$

= 3,25 + 1,25X

Pembahasan buku ini fokus terhadap penggunaan model SEM, sehingga materi regresi membahas tentang regresi linear berganda dan variabel *intervening* yang menggunakan proses simultan.

2. Regresi Linear Berganda (multiple linear regression)

Regresi linier berganda merupakan model regresi linear dengan melibatkan lebih dari satu variabel bebas atau *predictor*. Regresi linear berganda adalah model prediksi atau peramalan dengan menggunakan data berskala interval atau rasio dan variabelnya *predictor*nya bisa lebih dari satu.

Skala data yang dimaksud adalah semua variabel terutama variabel terikat. Pada regresi linear tidak menutup kemungkinan variabel bebasnya menggunakan data *dummy*.

3. Perbedaan Regresi Linear Berganda dan Sederhana

Regresi linear berganda memiliki jumlah variabel bebas lebih dari satu. Sedangkan jumlah variabel bebas hanya ada satu. Fenomena tersebut dikenal dengan regresi linear sederhana. Tetapi, jika pada *tool* SEM variabel bebasnya lebih dari satu, maka *tool* tidak bisa di*run* yang akhirnya mengubah model. Adanya variabel *intervining* akan diproses menjadi variabel eksogen.

Model regresi linear berganda diilustrasikan dengan persamaan sebagai berikut:

$$Y = \alpha + \beta 1 X2 + \beta 2 X2 + \beta n Xn + e$$

Keterangan:

Y = Variabel terikat atau response.

X = Variabel bebas atau predictor.

 α = Konstanta.

 β = Slope atau Koefisien estimate.

Contoh Regresi Linear Berganda

Salah satu contoh penelitian yang menggunakan analisis regresi linear berganda berjudul "Pengaruh ROA, NPM dan Size Terhadap Return Saham". Variabel dalam penelitian tersebut menggunakan skala data atau rasio. Dengan kata lain,

data yang digunakan adalah data kuantitatif atau numerik. Penelitian tersebut juga menjelaskan bahwa variabel bebasnya lebih dari satu, yaitu ROA, NPM, dan size.

b. Asumsi Klasik Regresi Linear Berganda

Regresi linear mempunyai syarat atau asumsi klasik yang harus terpenuhi agar model prediksi yang dihasilkan bersifat BLUE (best linear unbiased estimation). Asumsi klasik pada regresi linear berganda antara lain: data interval atau rasio, linearitas, normalitas, non outlier, homoskedastisitas, non multikolinearitas, dan non autokorelasi.

a. Data interval atau rasio

Skala data semua variabel terutama variabel terikat adalah interval atau rasio. Asumsi ini tidak perlu diuji, cukup dipastikan bahwa data yang digunakan adalah data interval atau rasio (numeric atau kuantitatif).

b. Linearitas

Ada hubungan linear antara variabel bebas dengan variabel terikat. Asumsi linearitas diuji dengan uji linearitas regresi, misalnya dengan kurva estimasi. Kurva estimasi dapat ditentukan bila ada hubungan linear atau tidak dengan melihat nilai p value linearitas. Jika p value < 0,05. Mmaka terdapat hubungan yang linear antara *predictor* dan respons.

c. Normalitas residual

Residual adalah beda antara y dengan y prediksi. Y adalah variabel terikat, sedangkan y prediksi adalah Y hasil persamaan regresi. Sehingga residual dibangun dengan rumus y-y prediksi. Asumsi normalitas pada regresi linear ada pada residualnya, bukan pada data per variabelnya. Uji Asumsi normalitas regresi linear dapat diuji dengan pelbagai metode uji normalitas, seperti uji shapiro wilk, lilliefors, atau kolmogorov smirnov, anderson darling, ryan joiner, shapiro francia, jarque bera, skewness kurtosis test, dan pelbagai jenis uji normalitas lainnya.

d. Non outlier

Outlier disebut dengan data yang nilainya extreme. Batasan outlier tidak bisa dilihat dari nilai absolut studentized residual. Jika absolut studentized residual > 3 maka sampel atau observasi yang dimaksud menjadi outlier.

e. Homoskedastisitas

Homoskedastisitas adalah sebuah kondisi di mana varian dari *error* bersifat konstan atau tetap. Dengan kata lain, varian *error* bersifat identik untuk setiap pengamatan. Kebalikan dari homoskedastisitas adalah heteroskedastisitas. Model regresi linear berganda yang baik adalah model yang bebas dari kondisi heteroskedastisitas. Pengujian homoskedastisitas regresi linear berganda dapat menggunakan uji homoskedastisitas dan pelbagi macam uji lainnya.

f. Non multikolinearitas

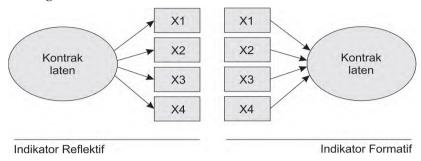
Multikolinearitas adalah keadaan korelasi kuat antarvariabel bebas di dalam model. Dinyatakan terdapat interkorelasi jika hubungan antarvariabel bebas di dalam model regresi linear berganda > 0,8. Beberapa pakar menggunakan batasan lebih dari 0,9. Cara lain yang lebih objektif adalah dengan menggunakan nilai *variance inflating factor* (VIF) dan *tolerance*. Dikatakan terdapat multikolinearitas jika nilai VIF > 10 dan/atau nilai tolerance < 0,01. Berdasarkan uraian di atas, maka asumsi multikolinearitas hanya terdapat dalam regresi linear berganda dan tidak ada pada regresi linear sederhana. Sebab pada regresi linear berganda terdapat lebih dari satu vriabel bebas, sedangkan pada regresi linear sederhana hanya terdapat satu variabel bebas.

g. Non autokorelasi

Non autokorelasi dapat diartikan terdapat korelasi antarwaktu. Autokorelasi ini sering terjadi pada regresi linear berganda dengan data *time series* atau runtun waktu dan jarang sekali terjadi pada data *cross section*. Contoh data runtun waktu yaitu data *return* saham sebuah perusahaan per bulan dari tahun 2012 sampai dengan 2017, sedangkan data *cross section*, misalnya data hasil kuesioner yang disebarkan pada semua siswa di kelas. Uji autokorelasi bisa diuji dengan menggunakan nilai *durbin watson* (DW) dan *run test*. Jika menggunakan uji *durbin watson* dikatakan tidak ada autokorelasi apabila nilai DW hitung > batas atas DW *table* dan (4–DW Hitung) > Batas atas DW Tabel.

c. Kesalahan Persepsi Tentang Asumsi Regresi Linear

Ada beberapa kesalahan klasik yang sering terjadi pada peneliti pemula. Terutama peneliti yang masih awal berkenalan


dengan regresi linear berganda, yaitu lebih dulu melakukan uji asumsi klasik, kemudian melakukan uji regresi linear. Seharusnya, dari sekian banyak asumsi yang ada dalam regresi linear berganda hanya asumsi linearitas yang harus dilakukan terlebih dahulu. Uji linearitas regresi hanya dilakukan jika tujuannya untuk membentuk model terbaik. Jika tujuannya untuk sekadar menjawab hipotesis, maka asumsi linearitas ini bisa diabaikan.

Asumsi multikolinearitas bisa dilakukan sebelum uji regresi, sebab yang digunakan adalah data per variabel, sedangkan asumsi yang lainnya dilakukan setelah uji regresi. Alasannya adalah uji normalitas, *outlier*, homoskedastisitas dan autokorelasi menggunakan nilai *error* atau residual sebagai parameternya.

d. Software Regresi Linear Berganda

Telah dijelaskan di awal bahwa penulis telah membuat pelbagai jenis artikel tentang regresi linear berganda menggunakan berbagai macam software. Maka dapat diambil kesimpulan banyak software yang dapat digunakan, antara lain: SPSS, eviews, STATA, minitab, SPSS AMOS, excel, dan software komputasi lainnya. Agar setiap uji model tidak dapat diduplikasi lihat dan pahami parameter pengujian model pada bab 1.

SEM merupakan analisis yang tepat jika digunakan untuk analisis multivariat dalam penelitian sosial, keuangan atau variabel vang menggunakan skala nominal/rasio. Hal tersebut dikarenakan dibeberapa kasus peneliti harus menggunakan variabel laten (variabel yang tidak dapat diukur secara langsung). Misalnya kepuasan konsumen, motivasi, komitmen organisasional, dll. Variabel tersebut tidak dapat diukur secara langsung, sehingga peneliti harus menggunakan beberapa indikator atau pertanyaan pada kuesioner. Berbeda dengan variabel yang terukur langsung seperti laba bersih, gaji bulanan, berat badan, dll. Jika menggunakan analisa regresi, maka setiap variabel tersebut dapat diasumsikan dan diukur secara langsung, sehingga kita menggunakan skor rata-rata atau total dari item-item tersebut. Namun, metode ini mengabaikan adanya kesalahan pengukuran (measurement error). Jika kita tidak memperhitungkan kesalahan pengukuran tersebut maka koefisien jalur dapat menjadi bias (Smith dan Langfield [2004] dan Hair [2011]). Selain itu, SEM mampu menguji penelitian yang kompleks dan memiliki banyak variabel secara simultan. SEM dapat menyelesaikan analisis dengan satu kali estimasi di mana yang lain diselesaikan dengan beberapa persamaan regresi. SEM dapat melakukan analisis faktor, regresi, dan jalur sekaligus.

SEM merupakan salah satu jenis analisis multivariat generasi kedua. Mengapa dibilang generasi kedua? kemajuan ilmu dan teknologi memungkinkan perkembangan alat analisis statistika, khususnya statistik inferensial penelitian dengan analisis multivariat. Hair (2013) membagi metode analisis multivariat menjadi dua kelompok menurut waktu perkembangannya, yaitu teknik generasi pertama dan kedua. Lebih jelasnya dapat dilihat pada tabel berikut.

Tujuan Utama Eksplorasi		Tujuan Utama Konfirmasi		
Teknik Generasi I	Analisis kluster Exploratory factor analysis Multidimensional scalling	Analysis of Variance Regresi Korelasi		
Teknik Generasi II	Partial Least Squares/ Variance SEM (SEM-PLS)	Covariance-based SEM (CB-SEM)		

Dari tabel di atas dapat kita lihat bahwa terdapat dua SEM yaitu CB-SEM dan VB-SEM/PLS. Namun, kapankah kita dapat menggunakan CB-SEM atau SEM-PLS. Berikut panduan singkat (*rule of tumb*) untuk memilih CB-SEM atau PLS-SEM.

	CB-SEM	PLS-SEM		
Tujuan Penelitian	menguji teori, konfirmasi teori atau membandingkan berbagai alternatif teori	Bersifat eksploratoris atau perluasan teori, mengidentifikasi variabel determinan utama atau memprediksi konstruk tertentu		
Spesifikasi Model Pengukuran	Erorr term memerlukan spesifikasi tambahan seperti kovariasi	Terdapat konstruk formatif. (CB-SEM hanya reflektif)		
Model Struktural	Konstruk terdapat hubungan nonrecursive (timbal balik)	Tidak terdapat hubungan nonrecursive (timbal balik)		
Karakteristik Data dan Algoritma	Data memenuhi asumsi-asumsi CB-SEM seperti minimal ukuran sampel dan distribusi normal.	Jika ukuran sampel relatif kecil dan tidak memenuh asumsi-asumsi CB-SEM (spesifikasi model, iden- tifikasi,nonconvergence, distribusi data, dsb)		
Evaluasi Model	Penelitian yang memerlukan indeks <i>goodness of</i> <i>fit</i> yang lengkap secara keseluruhan	Tidak memerlukan indeks <i>goodness of fit</i> yang lengkap		

Peneliti dituntut agar dapat memahami beberapa persyaratan dalam menggunakan jenis *software* SEM, sehingga hasil pengolahan *compatible* dan akurat. Terdapat dua jenis SEM dan *software* komputer yang tepat yaitu

Jenis SEM	Software yang sesuai
Covariance Based (CB-SEM)	AMOS LISREL EQS M-Plus

Variance/Component (VB-SEM/PLS)	Based	TETRAD GSCA Smart PLS Warp PLS
------------------------------------	-------	---

Tool SEM menggunakan pendekatan kuantitatif. Pengukuran tool SEM menjastifikasi teori. Oleh karena itu, peneliti diharuskan untuk menggunakan teori yang mendukung. Hal tersebut dikarenakan dalam proses SEM akan diprediksi hubungan antara variabel eksogen dan endogen dengan teori yang relevan dengan judul penelitian.

SEM dideskripsikan sebagai analisis yang menggabungkan pendekatan analisis faktor (factor analysis), model struktural (structural model), dan analisis jalur (path analysis) dengan melakukan tiga macam kegiatan, yaitu pengecekan validitas reliabilitas, pengujian antarvariabel, dan mendapatkan model yang cocok untuk prediksi. Hal tersebut memunculkan banyaknya kreteria/syarat-syarat yang harus dipenuhi. SEM memiliki fleksibiltas yang tinggi bagi peneliti untuk menghubungkan teori dengan data. Terdapat dua pengembangan teknik SEM antara lain

- a. PLS (partial least square). Pada tool ini tidak terdapat global of fit; dan
- b. GSCA (generalized structured component analysis)
 GSCA merupakan penyempurnaan dari metode-metode sebelumnya. Pada tool ini terdapat global of fit.

GeSCA dapat digunakan untuk menghitung skor dan menerapkan pada sampel yang sangat kecil. GeSCA dapat diterapkan pada model struktual, baik menggunakan dasar teori yang telah ditetapkan sebagai metode analisis konfirmatori atau teori yang belum ditetapkan. Selain itu, GeSCA dapat digunakan pada model struktural yang mencakup indikator refleksif atau formatif.

GeSCA hadir sebagai solusi terhadap keterbatasan metodemetode yang ada sebelumnya, yaitu sampel harus besar, data harus terdistribusi normal multivariat, indikator harus refleksif, model harus berdasarkan pada teori, dan adanya *indeterminacy*. PLS dan GeSCA dipilih jika tidak dapat diselesaikan dengan cara *covariant base*.

BAB 3 APLIKASI SEM

PENDAHULUAN

Sebenarnya, penulis ingin membahas aplikasi amos pada bab 3, tetapi pada buku pertama telah dijelaskan dengan lengkap materi tersebut. Oleh karena itu, jika peneliti membutuhkan materi tentang aplikasi amos, peneliti dapat melihat buku pertama saya (perlu pembaca ketahui dan tidak perlu ragu semakin tinggi seri amos, maka penulis hanya memperbaiki tampilan untuk menyetarakan dengan perkembangan komputer).

Pembahasan pada bab ini merupakan contoh penelitian. Banyak buku yang membahas dua atau tiga variabel endogen. Buku ini menyajikan model *two* step yang kemudian berubah menjadi *one* step *approach* dengan lima variabel eksogen/independent, dan tiga variabel dependent/endogen.

Perkembangan industri pada dekade ini, baik jasa maupun manufaktur telah berkembang pesat akibat perkembangan teknologi dan pengaruh globalisasi. Kondisi ini menyebabkan banyak perusahaan khususnya perusahaan sejenis melakukan perbaikan atau menyusun kembali strategi dan taktik bisnisnya. Meneliti banyak variabel hanya untuk mendekati permasalahan seperti yang ada di lapangan dengan proses tersinergi. Perusahaan berlomba mencari cara agar tetap hidup dan berkembang, sehingga dapat mempertahankan sekaligus meningkatkan pangsa pasar.

KONSTRUKSI/VARIABEL DAN INDIKATOR

Kualitas Layanan

Kualitas layanan merupakan salah satu ukuran keberhasilan bagi sebuah perusahaan. Di samping itu, kualitas pelayanan dapat digunakan sebagai salah satu alat untuk mencapai keunggulan bersaing bagi perusahaan. Semakin baik pelayanan yang diberikan, maka semakin tingi pula tingkat keberhasilan dan kualitas

perusahaan yang dicapai dan begitu pula sebaliknya.

Menurut Tjiptono (2011) kualitas layanan berfokus pada upaya pemenuhan kebutuhan dan keinginan pelanggan serta ketepatan penyampaiannya untuk mengimbangi harapan pelanggan. Terdapat dua faktor utama yang mempengaruhi kualitas pelayanan, pelayanan yang diharapkan (expecteddservice) dan yang dipersepsikan (perceiveddservice). Pendapat lain dikemukakan oleh Jasfar (2005) bahwa yang dimaksud kualitas layanan adalah bagaimana tanggapan konsumen terhadap layanan yang dirasakannya. Berdasarkan beberapa definisi di atas dapat disimpulkan bahwa kualitas layanan merupakan tanggapan konsumen terhadap layanan yang dikonsumsinya. Apabila kualitas layanan yang diterima oleh konsumen lebih baik atau sama dengan yang dibayangkan, maka cenderung akan mencobanya kembali. Akan tetapi, bila perceived services lebih rendah dari expected services, maka konsumen akan kecewa dan akan menghentikan hubungannya dengan perusahaan jasa yang bersangkutan.

Pengertian kualitas menurut Tjiptono (2011) dari beberapa aspek antara lain

- 1. kesesuian dengan kecocokan/tuntutan;
- kecocokan untuk pemakaian;
- 3. perbaikan/penyempurnaan berkelanjutan;
- 4. bebas dari kerusakan/cacat;
- 5. pemenuhan kebutuhan pelanggan sejak awal dan setiap saat;
- 6. melakukan segala sesuatu secara benar dengan semenjak awal; dan
- 7. sesuatu yang bisa membahagiakan pelanggan.

Variabel Pembentuk Kualitas Layanan

Menurut Philp Kotler (dalam Supranto, [2011]) terdapat lima determinan kualitas jasa sebagai berikut.

- 1. Keandalan (*reliability*)
 Kemampuan untuk melaksanakan jasa yang dijanjikan dengan tepat dan terpercaya.
- 2. Keresponsifan (responsiveness)
 Kemampuan untuk membantu pelanggan dan memberikan jasa dengan cepat atau ketanggapan.
- 3. Keyakinan (*confidence*)
 Pengetahuan dan kesopanan karyawan serta kemampuan mereka untuk menimbulkan kepercayaan dan keyakinan atau *assurance*.

- 4. Empati (*emphaty*)
 Syarat untuk peduli berarti memberi perhatian pribadi bagi pelanggan.
- 5. Berwujud (*tangible*)
 Penampilan fasilitas fisik, peralatan, personal, dan media komunikasi.

Indikator pembentuk variabel kualitas layanan dapat dilihat pada tabel 3.1

E-toll

Electric toll adalah singkatan dari dari e-toll. E-toll merupakan suatu program transaksi pembayaran jalan tol non tunai menggunakan mesin reader contactless. PT Jasa Marga menerapkan e-toll mulai tahun 2009 di ruas tol tertentu, yaitu Cawang—Tomang—Cengkareng, Cawang—Tanjung Priok—Pluit, dan Cikupa—Merak. PT Jasa Marga bekerjasama dengan Bank Mandiri untuk mengeluarkan kartu e-toll (saat pengamatan peneliti).

Cara menggunakan *e-toll* sangat sederhana hanya dengan menempelkan kartu pada mesin *reader contactless* dan protal tol akan otomatis terbuka. Mesin *reader contactless* adalah mesin yang dapat mendeteksi/membaca kartu dengan jarak jauh. Sesuai SOP waktu yang dibutuhkan untuk proses transaksi menggunakan *e-toll* sekitar empat detik. *E-toll* menggunakan teknologi yang bernama *radio frequency identification* (RFID). Radio tersebut berfungsi untuk melakukan transaksi jarak jauh (*contactless*). Kartu *e-toll* tidak membutuhkan PIN atau tanda tangan guna mempermudah pelanggan saat melakukan transaksi. Penerapan *e-toll* bertujuan untuk mempercepat layanan transaksi, meminimaslisir antrian, dan menyelaraskan program pemerintah Gerakan Nasional Non Tunai (GNNT) (dalam Amalia, 2017).

GNNT merupakan gerakan pembayaran non tunai yang dicanangkan Bank Indonesia pada 14 Agustus 2014. Gubernur Bank Indonesia Agus D W Martowardojo berkata bahwa GNNT ditujukan untuk meningkatkan kesadaran masyarakat terhadap penggunaan instrumen non tunai, sehingga berangsur-angsur akan terbentuk komunitas atau masyarakat yang lebih memilih menggunakan instrumen non tunai (*Less Cash Society*/LCS), khususnya dalam melakukan transaksi atas kegiatan ekonominya (dalam www.bi.go. id). GNNT diterapkan dalam rangka mewujudkan sistem pembayaran yang efisien, aman, dan andal dengan tetap menjunjung tinggi

aspek perlindungan konsumen, memperhatikan perluasan akses, dan kepentingan nasional.

Efektivitas *e-toll* adalah upaya untuk mengukur apakah suatu program telah berjalan dengan efektif sesuai yang diharapkan perusahaan. Pengukuran efektivitas *e-toll* dapat ditinjau dari indikator pemahaman program, tepat waktu, tepat sasaran, tercapainya tujuan, dan perubahan nyata. Indikator pembentuk variabel *e-toll* dapat dilihat pada tabel 3.1.

Kepuasan Pelanggan

Kepuasan pelanggan menjadi fokus perhatian semua pihak, baik pemerintah, pelaku bisnis, pelanggan, dan sebagainya. Hal ini disebabkan semakin baiknya pemahaman mereka atas konsep kepuasan pelanggan sebagai strategi untuk memenangkan persaingan di dunia bisnis. Kepuasan pelanggan merupakan hal penting bagi penyelenggara jasa, karena pelanggan akan menyebarluaskan rasa puasnya kepada calon pelanggan lainnya, sehingga akan menaikkan reputasi pemberi jasa.

Menurut Kotler dan Keller (dalam Panjaitan, [2016]) kepuasan adalah perasaan senang atau kecewa seseorang yang berasal dari perbandingan antara kesannya terhadap kinerja atau hasil suatu produk dan harapan-harapannya. Perusahaan akan berhasil memperoleh pelanggan dalam jumlah banyak apabila dinilai dapat memberikan kepuasan bagi pelanggan. Ketika pelanggan telah merasa puas maka akan terjalin hubungan harmonis antara produsen dan konsumen, menciptakan dasar yang baik bagi pembelian ulang, dan membentuk rekomendasi dari mulut ke mulut yang dapat menguntungkan sebuah perusahaan.

Tjiptono (dalam Arviantama dkk. [2017]) mengungkapkan bahwa kepuasan pelanggan merupakan evaluasi purna beli di mana alternatif yang dipilih minimalnya memberikan hasil (*outcome*) sama atau melampaui harapan pelanggan, sedangkan ketidakpuasan timbul apabila hasil yang diperoleh tidak memenuhi harapan pelanggan.

Indikator Kepuasan Pelanggan

Hawkins dan Lonney dikutip (dalam Tjiptono, [2004]) atribut pembentuk kepuasan terdiri dari

 kesesuaian harapan Kesesuaian harapan merupakan tingkat kesesuaian antara kinerja produk yang diharapkan oleh konsumen dengan yang dirasakan oleh konsumen yang meliputi

- a. produk yang diperoleh sesuai atau melebihi dengan yang diharapkan;
- b. pelayanan oleh karyawan yang diperoleh sesuai atau melebihi dengan yang diharapkan; dan
- c. fasilitas penunjang yang didapat sesuai atau melebihi dengan yang diharapkan.

2) minat berkunjung kembali

minat berkunjung kembali merupakan kesedian konsumen untuk berkunjung kembali atau melakukan pembelian ulang terhadap produk terkait yang meliputi:

- a. berminat untuk berkunjung kembali karena pelayanan yang diberikan oleh karyawan memuaskan;
- b. berminat untuk berkunjung kembali karena nilai dan manfaat yang diperoleh setelah mengonsumsi produk; dan
- c. berminat untuk berkunjung kembali karena fasilitas penunjang yang disediakan memadai.

3) kesediaan merekomendasikan

Kedesiaan merekomendasika merupakan kesediaan konsumen untuk merekomendasikan produk yang telah dirasakan kepada teman atau keluarga yang meliputi

- a. menyarankan teman atau kerabat untuk membeli produk yang ditawarkan karena pelayanan yang memuaskan;
- menyarankan teman atau kerabat untuk membeli produk yang ditawarkan karena fasilitas penunjang yang disediakan memadai;
- menyarankan teman atau kerabat untuk membeli produk yang ditawarkan karena nilai atau manfaat yang didapat setelah mengonsumsi sebuah produk jasa.

Terdapat beberapa indikator di atas yang tidak cocok untuk penelitian ini (lihat pada tabel 3.1).

Loyalitas Pelanggan

Loyalitas pelanggan secara harfiah diartikan kesetiaan, yaitu kesetiaan seseorang terhadap suatu objek. Mowen dan Minor (1998) dalam Zain (2013) mendefinisikan loyalitas sebagai kondisi pelanggan yang mempunyai sikap positif, komitmen, dan bermaksud meneruskan pemebliannya di masa yang akan datang terhadap suatu merek. Loyalitas menunjukkan kecenderungan pelanggan untuk menggunakan merek tertentu dengan tingkat konsistensi

yang tinggi (Dharmesta [1999] dalam Zain [2013]). Hal ini berarti loyalitas selalu berkaitan dengan preferansi pelanggan dan pembelian aktual.

Indikator Loyalitas Pelanggan (lihat tabel 3.1)

Menurut Barlow & Maul (dalam Zain [2013]) pengukuran indikator kunci loyalitas bukanlah pengukuran kepuasan. Indikator kunci untuk mengukur loyalitas pelanggan tersebut adalah: "While organizations need not be interested in customer satisfaction for its own sake, they need to be consumed by what happens when customers are happy or exited or whatever emotional state is appropriate for them to experience. Namely, do happy consumers (1) continue to do business (2) purchase additional products and (3) tell others? If this is what is interesting, why not focus directly on what customer do when they are happy? In doing so, attention will be placed on the undoubtedly include loyalty and product referrals to others."

PENGARUH ANTARKONSTRUKSI/VARIABEL

Pengaruh Kualitas Layanan Terhadap Efektifitas Program E-toll

Peneliti belum menemukan teori untuk pengaruh kualitas layanan terhadap efektifitas program *e-toll,* karena model pengembangan teknologi merupakan tuntutan dan kebutuhan konsumen *e-toll* (ajuan teori).

Pengaruh Efektifitas Program E-toll Terhadap Kepuasan Pelanggan

Efektifitas dan efisiensi waktu menggunakan kartu *e-toll* di gerbang toll menjadi kepuasan konsumen. Kualitas memberikan dorongan kepada pelanggan untuk menjalin ikatan hubungan yang kuat dengan perusahaan. Fenomena tersebut menuntut perusahaan untuk memahami harapan dan kepuasan konsumen dengan cara memaksimalkan atau meniadakan pengalaman pelanggan yang kurang menyengangkan (Panjaitan, [2016]).

Kualitas pelayanan sangat penting bagi perusahaan karena berpengaruh terhadap setia program yang dijalankan. Kualitas pelayanan yang diberikan perusahaan akan mengikuti keberhasilan suatu program, sehingga layanan terhadap efektivitas program sangat mempengaruhi kualitas.

Terdapat faktor-faktor penentu yang digunakan untuk mengevaluasi kualitas pelayanan pelanggan terhadap produk dan jasa. Umumnya, yang sering digunakan perusahaan untuk mengetahui kepuasan pelanggan adalah aspek pelayanan dan kualitas barang atau jasa yang disediakan (Rahmayanty, [2010]).

Pengaruh Kepuasan Pelanggan Terhadap Loyalitas Pelanggan

Menurut Suh dan Yi (2006) dalam Setiawan (2017) mengemukakan bahwa hubungan antara kepuasan pelanggan dan loyalitas pelanggan tidak selalu sama karena dipengaruhi oleh beberapa faktor, salah satunya adalah karakteristik dari produk. Jadi, saat pelanggan puas terhadap produk dengan keterlibatan yang cukup tinggi, namun pelanggan belum tentu akan loyal karena faktor-faktor lain yang jauh lebih dominan dalam bentuk loyalitas pelanggan. Maka, dapat disimpulkan bahwa kepuasan dan loyalitas pelanggan adalah pelanggan yang puas, namun pelanggan yang puas belum tentu akan menjadi loyal, tergantung seberapa besar kepuasan pelanggan memiliki bobot dalam mempengaruhi pelanggan untuk loyal.

HIPOTESIS PENELITIAN

Berdasarkan rumusan masalah, tujuan penelitian, dan kerangka konseptual yang telah dijelaskan dapat diajukan hipotesis sebagai berikut.

Hipotesis Ke 1

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap *reliability*.

Hipotesis Ke 2

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap *assurance*.

Hipotesis Ke - 3

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap *tangible*.

Hipotesis Ke - 4

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap *empathy*.

Hipotesis Ke - 5

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap *responsiveness*.

Hipotesis Ke - 6

H₁: Kualitas layanan memiliki hubungan yang signifikan terhadap efektivitas program *e-toll*.

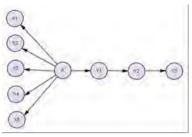
Hipotesis Ke - 7

H₁: Efektivitas program *e-toll* memiliki hubungan yang signifikan terhadap kepuasan pelanggan.

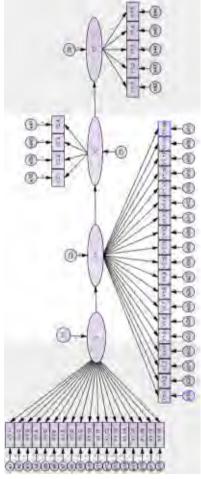
Hipotesis Ke - 8

- H₁: Kepuasan pelanggan memiliki hubungan yang signifikan terhadap loyalitas pelanggan.
- H₀: Hipotesis₀ kebalikan dari H₁.

Dari kedelapan hipotesis di atas, hipotesis 1 (H₁) merupakan kebalikan dari hipotesis 0 (H₀). Model bangunan dikembangkan berdasarkan teori-teori yang relevan dan akan diuji lebih lanjut. Pengujian model akan dilakukan dengan menggunakan *structural equation modelin*. Langkah-langkah pengujiannya akan diuraikan sebagai berikut.


PENGUJIAN MODEL

Terdapat tujuh langkah pengujian model dengan menggunakan SEM seperti yang telah dijelaskan pada BAB 1, yaitu


- 1. pengembangan model berbasis teori;
- 2. pengembangan diagram alur untuk menunjukkan hubungan kausalitas;
- 3. konversi diagram alur ke dalam serangkaian persamaan struktural dan spesifikasi model pengukuran;
- 4. pemilihan matriks input dan teknik estimasi atas model yang dibangun;
- 5. menilai problem identifikasi;
- 6. evaluasi model; dan
- 7. interpretasi dan modifikasi model.

a. Pengembangan Model Berbasis Teori

Model yang dibangun secara teoretis berdasarkan telaah pustaka merupakan syarat mutlak bagi pengembangan model SEM (gambar dimuat kembali agar pembaca fokus terhadap pembahasan tanpa melihat gambar yang di halaman sebelumnya). Penelitian ini bertujuan untuk menguji hubungan antarkualitas layanan. Konstruksi yang diteliti akan diuraikan melalui gambar berikut.

Gambar 3.1 Konsep Pengembangan Model Berbasis Teori (Model awal)

Gambar: 3.2 *Path diagram* setelah *warning*, sehingga variabel bentukan X tidak bisa di*run*. Kemudian, indikator $X_{1'}X_{2'}X_{3'}X_{4}$, dan X_5 menjadi indikator X termasuk variabel bentukan Y_1

b. Pengembangan Diagram Alur

Setelah model berbasis teori dikembangkan pada langkah pertama, kemudian pada langkah kedua model akan disajikan dalam *path diagram* untuk menunjukkan hubungan kausalitas (pembahasan diulang agar pembaca fokus terhadap materi tanpa melihat halaman depan). Tampilan *path diagram* akan diuraikan seperti model di bawah ini (gambar 3.2).

Konstuksi efektivitas program *e-toll* dapat menjadi konstruksi eksogen jika proses simultan fokus pada variabel kepuasan pelanggan. Selanjutnya, kepuasan pelanggan dapat menjadi konstruksi eksogen bila proses simultan difokuskan pada konstruksi loyalitas pelanggan.

c. Konversi Diagram Alur ke dalam Serangkaian Persamaan Struktural dan Spesifikasi Model Pengukuran

Pada langkah ini, model yang sudah disajikan dalam bentuk path diagram akan dikonversi ke persamaan pengukuran (measurement model) dan struktural (structural model). Bentuk bentuk persamaannya adalah sebagai berikut.

1) Persamaan Pengukuran (Measurement Model)

Spesifikasi model pengukuran (*measurement model*) terlebih dahulu dilakukan pada konstruksi eksogen pertama yaitu kualitas layanan. Adanya perubahan model sebagai berikut.

2) Persamaan Matematika Struktural (Structural Model)

Persamaan struktural dari model yang dibuat dalam penelitian ini adalah sebagai berikut.

dapat ditulis hingga Y₂

a.
$$Y_1 = f(X) + Z_2$$

b.
$$Y_2 = f(Y_1) + Z_3$$

 $Y_2 = ff(Y_1) + Z_3$

c.
$$Y_3 = f(Y_2) + Z_4$$

 $Y_3 = fff(Y_1) + Z_4$

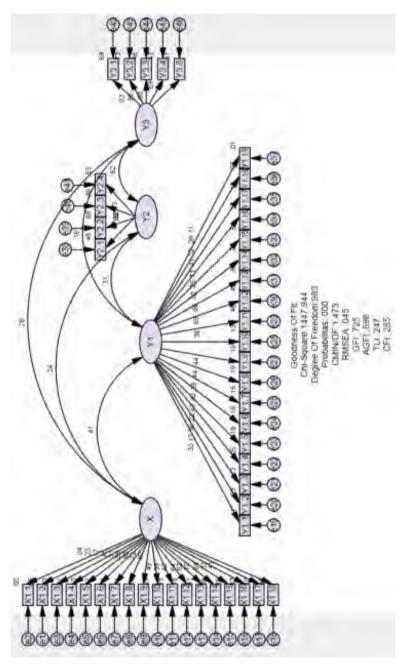
Tabel 3.1 Tabel Identifikasi Variabel dan Indikator Variabel

Venture Eventure		Tind	Skales	Versited	Sudicator			
		X1.1	Release (Zme. Henry 7 dick. 2011)		Pemahaman program (Batemo 2007)	51.1	Semiling polarymer I red sector language	
	Ratiofficing (Philip Retion dalarm Septemble 2017)	X1.1	Resolutation (Zince, Heavy 7 disk, 2015)			51.2	Socialismi pelapatan E-foll melalui meda neralo	
		Xi.f	Kerrstesen John (Zone, Berry T dak, 2015)			53.3	Bernalisepi polarisepan E. telli matatet media unditternit	
		XI A	Alemai informat mesin a toli (Zura, Herry T dati 2015)			50.4	Streetings probabilism T 410 manufactured online	
		X1.5	Katarja norida rando:		Periodopas program (Bernes -3(07)	51.5	Us colon programate E-142.	
	Airestone Pallip Korise dalam	XI 6	Keemahas patama Zana Harry T dos. 2017)			91.4	Admysig straight designation E-foll	
	2011)	20.7	Kingai tantnan pitigai			$\lambda 1 >$	Franchistan cara programa E-tool	
		20.0	Zografina jetano		Tepot marcon (Services 2007)	27-0	Layeran 2-1-13 talah sejesa dangan kebasilan inanyamba	
	-	X1 0	Earth tot (Zone, Heavy T den 2013)			101.9	Penengan kebijanan É-toll kepada penggana jalan tol	
Kustina Latinan	Tangole (Paulge Korles	34.14	Tempdan paper informati (Zena, thery T data 2015)			37.19	Ketaparan wasta operas E-tol secal SOF member dilean 4 data (Amelia, 2017)	
Kelie	datare Sepresers	NO 11	Resident Sale Services (Times, Bloom T. data, 2015)	Efectivity	Topot intro	Y) 11	Estamon organization periodologia (Carlo)	
Salam Segrembro 2011)	20(4)	25.12	Red eros dengen feather yang language the resonant (Zone Rhey T das 2015)	(\$60.00) (\$60.000 (\$007)	1(%) Soft	V1.12	Secreption processes E-toil desket installed Section Selection values falls and as design transportate	
	Employ (Palin Ketie dalam (aprento 2011)	Mr 18	Call contar (Zyma, Harry T that 1015)		Terromanous Tephen (Sections) 2007)	V(15	Labels manager/planned weakful (published)	
	Septimes in a control of the control	NY 14	Konscittus postisparkat Jayeran proger factor (Zura, Many 7 day, 2015)			91.14	Mercyalination prospers passential GMT	
		NY 11	Kamparin lavoras petagos fericis (Zuna Benz 7 dez 1911)			VI is	Members PT Terroring memographic polyment (Annua, 2011)	
		XI 16	Penangunan kecelakuan (Zuna, Herry T dirk: 1035)			VI.1a	Mengani benaretan	
		30 11	Personal terration curus pressures (Zens, Berry T deb. 2015)		Parambal alysta (Satrono)	\$1.17	Table lags beyond reference processor (Amatic, 2017)	
		25 16	Kensdahari Ton Op- darapat			17.16	Principal persbayerer, also tell design F ApJ teleb restab (Autaba 2017)	
					20013	VT.19	Alternative Agricultural States times (constitute society) (Alterialia, 2017)	
				Кариши			proggana julia (1) puny diagna PT Jamesanja (YZ.1)	
				Pelangas (502)			despite yake dikingkui (°114)	
				Fernall Personal			promipentación por tema. Tod monidación para disemben. (92.4)	
			Tipfma, 20111	Emerge E-7 oli disenting dengan rel terresmonial telah neuni dengan persepul bensamen (Y2.4)				
				600	Berada belog infernati mengenai E-tell (1982) complain (37, 1)			
			Logalitat Palanggan	settighin (1/3.2)				
				(Robert at	Robert at:		ggmata julia to l'Espada once late (VS 5)	
				WF = 00.37			to Essents Restitive (YS.4). e jauk layange tembahan /YS.31	
					Let texas free	- Contract	a lane recognition comments (2.2.2.1)	

d. Pemilihan Matriks Input dan Teknik Estimasi atas Model yang dibangun

Setelah model dispesifikasikan secara lengkap, langkah berikutnya adalah memilih jenis input yang sesuai. Peneliti yang ingin menguji hubungan kausalitas, maka jenis input yang digunakan adalah kovarian (Hair dkk. [1995]). Penelitian ini akan menguji hubungan kausalitas, maka matriks kovarian yang digunakan sebagai input untuk operasi SEM. Teknik estimasi yang digunakan adalah *maximum likelihood estimation method* yang berubah menjadi *default*. Estimasi akan dilakukan secara bertahap yaitu.

Measurement Model (Confirmatory Factor Analysis)


Model ini ditujukan untuk mengestimasi penguji unidimensionalitas dari konstruksi eksogen dan konstruk endogen. Model pengukuran terhadap dimensi-dimensi yang membentuk variabel laten/konstruksi laten dapat dilihat pada CD yang telah disediakan. Unidimensionalitas dari setiap dimensi diuji melalui confirmatory factor analysis. Terdapat dua uji dasar dalam confirmatory factor analysis sebagai berikut.

(a) Uji Kesesuaian Model (*Goodness Of Fit Test*) Pengujian dilakukan dengan menggunakan parameter yang disajikan pada tabel 1.5.

Tabel 3.2 Goodness Of Fit Indices

Goodness of Fit Indices	Cut – Off Value
X ² Chi Square	Diharapkan Kecil (*)
Probabilitas	≥ 0,05
CMIN/DF	≤ 2,00
RMSEA	≤ 0,08
GFI	≥ 0,90
AGFI	≥ 0,90
TLI	≥ 0,95
CFI	≥ 0,95

Sumber: Ferdinand hlm, 61

Gambar 3.3 *Measurement model* pengaruh kualitas layanan terhadap efektivitas *e-toll,* kepuasan pelanggan, dan loyalitas pelanggan (setelah ada terapi akibat *warning eror*)

Tabel 3.3 Nilai Goodness of Fit dan Cut Off Value

Kriteria	Hasil Uji Model	Nilai Kritis	Keterangan
X ² Chi square	1447.944	Kecil, X^2 dengan df = 983 dengan α = 0,05	Tidak Baik
Probabilitas	0.000	≥ 0,05	Tidak Baik
CMIN/DF	1.473	≤ 2,00	Baik
RMSEA	0.045	≤ 0,08	Baik
GFI	0.725	≥ 0,90	Tidak Baik
AGFI	0.698	≥ 0,90	Tidak Baik
TLI	0.247	≥ 0,95	Tidak Baik
CFI	0.285	≥ 0,95	Tidak Baik

Sumber: Lampiran, telah diolah kembali

Keterangan (*): X^2 dengan df = 983 dengan α = 0,05 adalah 144,944. (lihat output *measurement model*). Tabel di atas menunjukkan bahwa setiap dimensi yang digunakan dalam penelitian ini **belum** mencerminkan variabel *laten* yang dianalisis, sehingga variabel yang tidak valid dan tidak signifikan akan dibuang. (lihat gambar 3.4).

(b) Uji Validitas Konvergen

Uji validitas konvergen dinilai dari *measurement model* yang dikembangkan dengan menentukan apakah setiap indikator yang diestimasi secara valid. Mengukur dimensi dari konsep yang diuji jika setiap indikator memiliki C.R>2.SE. Hal ini menunjukkan bahwa indikator valid mengukur apa yang diukur dalam model. (lihat pada tabel 3.4). Terdapat beberapa indikator yang memiliki nilai C.R > 2SE dan indikator yang tidak valid yaitu $X_{1.1'}$ $X_{1.2}$, $X_{1.3'}$ $Y_{1.1'}$ $Y_{1.2'}$ $Y_{1.3'}$ $Y_{1.4'}$ $Y_{1.5'}$ $Y_{1.6'}$ $Y_{1.9'}$ $Y_{1.10'}$ $Y_{1.14'}$ $Y_{1.18'}$ dan $Y_{1.19}$ karena nilai CR yang lebih kecil terhadap 2SE.

(c) Uji Signifikansi

Variabel dapat digunakan untuk mengonfirmasi sebuah variabel laten dan variabel lainnya dengan menggunakan angka *probabilitas* serta tahapan analisis sebagai berikut.

Nilai Lambda atau Loading Factor

Nilai lambda yang dipersyaratkan adalah sig, yaitu jika nilai lambda atau *loading factor* tidak sig maka variabel tidak memiliki dimensi yang sama dengan variabel lainnya untuk menjelaskan sebuah variabel laten.

Bobot Faktor (Regression Weight)

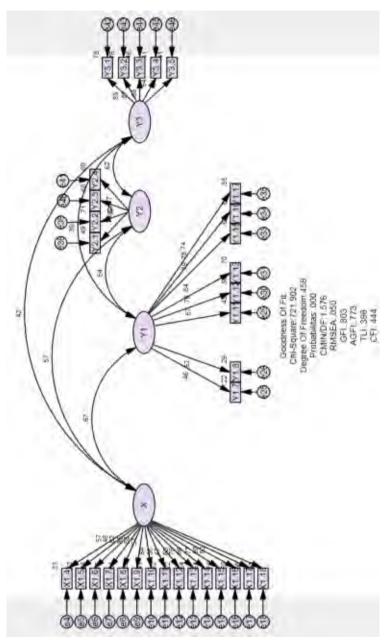
Kuat tidaknya setiap dimensi membentuk variabel latennya dapat dianalisis dengan menggunakan *uji-t* terhadap regression weight.

Tabel 3.4 Validitas, Signifikansi, dan, Regression Weights

Measurement Model

	Estimate	S.E.	C.R.	2.SE		Ket. Valid	Ket. Signifikan	Estimate Standardized
	Estimate	S.E.	C.K.	2.5E	p	Ket. Valid	Ket. Signilikan	Regression Weight
X1.8 < X	1.718	0.663	2.592	1.326	0.01	Valid	Signifikan	0.715
X1.9 < X	1.135	0.557	2.036	1.114	0.042	Valid	Signifikan	0.397
X1.10 < X	1.409	0.501	2.813	1.002	0.005	Valid	Signifikan	0.489
X1.11 < X	1.006	0.496	2.027	0.992	0.043	Valid	Signifikan	0.394
Y1.5 < Y1	1.344	1.173	1.146	2.346	0.252	Tidak Valid	Tidak Signifikan	0.434
Y1.6 < Y1	1.36	0.868	1.568	1.736	0.117	Tidak Valid	Tidak Signifikan	0.42
Y1.7 < Y1	1.045	0.679	1.54	1.358	0.124	Valid	Tidak Signifikan	0.389
Y1.8 < Y1	1.34	0.733	1.827	1.466	0.068	Valid	Signifikan	0.441
Y1.9 < Y1	1.171	0.805	1.454	1.61	0.146	Tidak Valid	Tidak Signifikan	0.438
Y1.10 < Y1	1.352	0.893	1.514	1.786	0.13	Tidak Valid	Tidak Signifikan	0.359
Y1.11 < Y1	2.107	1.109	1.9	2.218	0.057	Tidak Valid	Signifikan	0.676
Y1.12 < Y1	2.288	1.077	2.124	2.154	0.034	Tidak Valid	Signifikan	0.656
Y1.13 < Y1	2.54	1.176	2.16	2.352	0.031	Tidak Valid	Signifikan	0.82
Y1.14 < Y1	0.581	0.545	1.067	1.09	0.286	Tidak Valid	Tidak Signifikan	0.248
Y1.15 < Y1	1.613	0.698	2.312	1.396	0.021	Valid	Signifikan	<u>0.712</u>
Y3.1 < Y3	1							0.828
Y3.2 < Y3	0.977	0.093	10.479	0.186	***	Valid	Signifikan	0.855
Y3.3 < Y3	0.745	0.14	5.319	0.28	***	Valid	Signifikan	0.68
Y3.4 < Y3	0.582	0.138	4.203	0.276	***	Valid	Signifikan	0.687
Y3.5 < Y3	0.536	0.098	5.449	0.196	***	Valid	Signifikan	0.552
X1.18 < X	1							0.405
X1.17 < X	0.763	0.501	1.522	1.002	0.128	Valid	Tidak Signifikan	0.322
X1.16 < X	1.586	0.697	2.275	1.394	0.023	Valid	Signifikan	0.644
X1.15 < X	1.594	0.827	1.928	1.654	0.054	Valid	Signifikan	0.7
X1.14 < X	1.503	0.784	1.916	1.568	0.055	Valid	Signifikan	0.621
X1.13 < X	1.502	0.856	1.754	1.712	0.079	Valid	Signifikan	0.641
X1.12 < X	1.277	0.77	1.658	1.54	0.097	Valid	Tidak Signifikan	0.419
X1.1 < X	0.089	0.288	0.308	0.576	0.758	Tidak Valid	Tidak Signifikan	0.043
X1.2 < X	0.552	0.526	1.05	1.052	0.294	Tidak Valid	Tidak Signifikan	0.232
X1.3 < X	0.435	0.548	0.793	1.096	0.428	Tidak Valid	Tidak Signifikan	0.166
X1.4 < X	1.163	0.531	2.192	1.062	0.028	Valid	Signifikan	0.454
X1.5 < X	0.857	0.462	1.855	0.924	0.064	Valid	Signifikan	0.312
X1.6 < X	2.529	1.119	2.26	2.238	0.024	Valid	Signifikan	0.848
X1.7 < X	3.072	1.362	2.255	2.724	0.024	Tidak Valid	Signifikan	0.897
Y1.1 < Y1	1.215	1.316	0.923	2.632	0.356	Tidak Valid	Tidak Signifikan	0.325
Y1.2 < Y1	0.441	0.975	0.453	1.95	0.651	Tidak Valid	Tidak Signifikan	0.168
Y1.3 < Y1	1.344	1.424	0.944	2.848	0.345	Tidak Valid	Tidak Signifikan	0.357
Y1.4 < Y1	0.656	0.856	0.766	1.712	0.444	Tidak Valid	Tidak Signifikan	0.219
Y1.19 < Y1	-0.258	0.549	-0.47	1.098	0.638	Tidak Valid Tidak Valid	Tidak Signifikan	-0.113 -0.261
Y1.18 < Y1	-0.507	0.711	-0.713	1.422	0.476		Tidak Signifikan	
Y1.17 < Y1 Y1.16 < Y1	0.883	0.373	2.371	0.746	0.018	Valid	Signifikan	0.316
Y1.16 < Y1 Y2.2 < Y2	1							0.408 0.823
Y2.2 < Y2 Y2.3 < Y2	0.712	0.116	6.128	0.232	***	Valid	Signifikan	0.823
Y2.3 < Y2 Y2.1 < Y2	0.712	0.116	6.128	0.232	***	Valid	Signifikan	0.668
Y2.1 < Y2 Y2.4 < Y2	0.776	0.127	5.498	0.234	***	Valid	Signifikan	0.727
12.4 YZ	0.655	0.132	3.470	0.304		vanu	Signilikan	0.727

Sumber: Lampiran, telah diolah kembali


Sebuah variabel dapat digunakan untuk mengonfirmasi variabel laten dan variabel lainnya dengan menggunakan tahapan analisis bobot faktor (regression weight). Kekuatan setiap dimensi membentuk variabel laten dapat dianalisis dengan menggunakan uji-t terhadap regression weight (dapat dilihat tabel 3.4). CR atau critical ratio identik dengan t-hitung dalam analisis regresi harus dibandingkan dengan t-hitung. Apabila CR lebih besar dari t-hitung, maka variabel secara signifikan merupakan dimensi dari variabel laten yang dibentuk. Jika ditelusuri pada tabel-t level 0,05 dengan df = 46 (jumlah seluruh indikator). Didapatkan nilai t sebesar 1.6786. Apabila dilihat pada tabel 3.4 terdapat indikator yang tidak signifikan yaitu $X_{1.1}$, $X_{1.2}$, $X_{1.3}$, $Y_{1.1}$, $Y_{1.2}$, $Y_{1.3}$, $Y_{1.4}$, $Y_{1.5}$, $Y_{1.6}$, $Y_{1.9}$, $Y_{1.10}$, $Y_{1.14}$, $Y_{1.18}$, dan $Y_{1.19}$.

Indikator yang tidak valid dan insignifikan akan dihilangkan. Setelah dilakukan pengecekan model, selanjutnya akan dilakukan uji validitas dan uji signifikan. Saat semua indikator valid dan signifikan peneliti dapat menghasilkan persamaan matematika yang mudah dimengerti. Hal tersebut dapat menjadi pedoman apabila nilai goodness of fit pada measurement model telah mencapai rata-rata untuk suctural equation model.

e. Uji Kesesuaian *Model Goodness Of Fit Test* Pasca Model yang Tidak Valid dan Insignifikan Dapat Diabaikan

Pada tahap ini dilakukan pengujian kesesuaian model melalui telaah kriteria model good of fit dan cut off value. Kedua model tersebut belum menunjukkan variabel laten yang dianalisis indeks kesesuaian (fit index). Indeks ini akan menghitung proporsi dari varian matriks kovarian. Sampel yang ditentukan oleh matriks kovarian adalah populasi yang terestimasi. Pengujian dilakukan dengan menggunakan parameter nilai kritis, sedangkan output dari confirmatory factor analysis dapat dilihat pada lampiran. Berikut ringkasan yang telah dibuat seperti pada table 3.5.

Terdapat dua indikator *goodness of fit* yang dibandingkan dari hasil uji model dan nilai kritis. Dua marginal menunjukkan nilai yang baik dan empat indikator menyatakan nilai yang tidak baik seperti gambar di bawah ini.

Gambar 3.4 *Measurement Model* Pengaruh Kualitas Layanan Terhadap Efektivitas *E-toll,* Kepuasan Pelanggan, dan Loyalitas Pelanggan Pasca Model yang Indikatornya Tidak Valid dan Insignifikan Dapat Diabaikan

Tabel 3.5 Nilai *Goodness of Fit* dan *Cut off Value* Pasca Model yang Tidak Valid & Tidak Signifikan Dapat Diabaikan

Kriteria	Hasil Uji Model	Nilai Kritis	Ketera ngan
X ² Chi square	721.902	Kecil, X^2 dengan df = 458 dengan α = 0,05	Tidak Baik
Probabilitas	0,000	≥ 0,05	Tidak Baik
CMIN/DF	1.576	≤ 2,00	Baik
RMSEA	0,050	≤ 0,08	Baik
GFI	0.803	≥ 0,90	Marginal
AGFI	0.773	≥ 0,90	Marginal
TLI	0.398	≥ 0,95	Tidak Baik
CFI	0.444	≥ 0,95	Tidak Baik

Sumber: Lampiran, telah diolah kembali

e. Uji Validitas Pasca Model yang Indikatornya Tidak Valid dan Insignifikan

Uji validitas dinilai dari *measurement model* yang dikembangkan dalam penelitian dengan menentukan apakah setiap indikator yang diestimasi secara valid dapat mengukur dimensi dari konsep yang diuji. Sebuah indikator menunjukkan validitas yang signifikan apabila koefisien variabel indikator lebih besar dari dua kali standar errornya (C.R > 2.SE). Bila setiap indikator memiliki *critical ratio* (C.R) lebih besar dari dua kali standar *error*nya, maka indikator tersebut dapat dikatakan valid dan dapat mengukur apa yang seharusnya diukur dalam model. Pada tabel 3.6 semua indikator memiliki nilai C.R > 2SE, hal tersebut menunjukkan bahwa indikator yang diestimasi dinyatakan valid.

Tabel 3.6 Validitas, Signifikansi & Regression Weights

Measurement Model

	Estimate	S.E.	C.R.	2.SE	p	Ket. Valid	Ket. Signifikan	Estimate Standardized Regression Weight
X1.8 < X	1.219	0.253	4.815	0.506	***	Valid	Signifikan	0.798
X1.9 < X	1.023	0.259	3.952	0.518	***	Valid	Signifikan	0.568
X1.10 < X	1.169	0.229	5.102	0.458	***	Valid	Signifikan	0.639
X1.11 < X	0.896	0.212	4.223	0.424	***	Valid	Signifikan	0.564
Y1.7 < Y1	0.461	0.132	3.486	0.264	***	Valid	Signifikan	0.464
Y1.8 < Y1	0.685	0.159	4.306	0.318	***	Valid	Signifikan	0.535
Y1.11 < Y1	0.766	0.166	4.623	0.332	***	Valid	Signifikan	<u>0.674</u>
Y1.12 < Y1	1.107	0.167	6.615	0.334	***	Valid	Signifikan	0.763
Y1.13 < Y1	1.032	0.197	5.239	0.394	***	Valid	Signifikan	0.838
Y1.15 < Y1	0.786	0.125	6.314	0.25	***	Valid	Signifikan	0.789
Y3.1 < Y3	1							0.885
Y3.2 < Y3	0.912	0.082	11.171	0.164	***	Valid	Signifikan	0.875
Y3.3 < Y3	0.664	0.124	5.364	0.248	***	Valid	Signifikan	0.681
Y3.4 < Y3	0.427	0.15	2.844	0.3	0.004	Valid	Signifikan	0.641
Y3.5 < Y3	0.641	0.09	7.118	0.18	***	Valid	Signifikan	0.639
X1.18 < X	1							0.63
X1.17 < X	0.977	0.202	4.828	0.404	***	Valid	Signifikan	0.602
X1.16 < X	1.3	0.301	4.322	0.602	***	Valid	Signifikan	0.771
X1.15 < X	1.357	0.377	3.594	0.754	***	Valid	Signifikan	0.857
X1.14 < X	1.292	0.357	3.618	0.714	***	Valid	Signifikan	0.781
X1.13 < X	1.265	0.398	3.177	0.796	0.001	Valid	Signifikan	0.802
X1.12 < X	0.798	0.304	2.623	0.608	0.009	Valid	Signifikan	0.47
X1.4 < X	0.883	0.201	4.394	0.402	***	Valid	Signifikan	0.574
X1.5 < X	0.862	0.243	3.547	0.486	***	Valid	Signifikan	0.483
X1.6 < X	1.401	0.364	3.855	0.728	***	Valid	Signifikan	0.824
X1.7 < X	1.543	0.381	4.053	0.762	***	Valid	Signifikan	0.85
Y1.17 < Y1	0.969	0.12	8.095	0.24	***	Valid	Signifikan	0.738
Y1.16 < Y1	1							0.782
Y2.2 < Y2	1							0.841
Y2.3 < Y2	0.925	0.12	7.714	0.24	***	Valid	Signifikan	0.822
Y2.1 < Y2	0.747	0.102	7.333	0.204	***	Valid	Signifikan	0.701
Y2.4 < Y2	0.932	0.136	6.872	0.272	***	Valid	Signifikan	0.773

Sumber: Lampiran, telah diolah kembali

f. Uji Signifikansi setelah variabel model dibuang yang tidak valid & tidak signifikan

Sebuah variabel dapat digunakan untuk mengonfirmasi variabel laten dan variabel lainnya dengan menggunakan tahapan analisis bobot faktor (regression weight). Kekuatan setiap dimensi itu membentuk variabel laten yang dapat dianalisis dengan menggunakan uji-t terhadap regression weight (dapat dilihat pada tabel 3.6). C.R atau critical ratio identik dengan t-hitung dalam analisis regresi yang dibandingkan dengan t-tabel. Apabila C.R lebih besar dari t-tabel, maka variabel tersebut merupakan dimensi dari variabel laten yang dibentuk. Pada tabel-t level 0,05 dan df = 32 (jumlah seluruh indikator setelah dilakukan pembuangan) didapatkan nilai t sebesar 1.6938. Jadi, dapat disimpulkan bahwa semua indikator secara signifikan

merupakan dimensi dari variabel laten yang dibentuk (lihat pada tabel 3.6).

g. Uji Korelasi

Uji korelasi bertujuan untuk menguji ada tidaknya korelasi antara dua variabel. Matriks korelasi memiliki rentang 0 sampai 1. (disajikan pada tabel 3.7). Semua nilai koefisien korelasi (r) antarvariabel memiliki nilai positif dan mendekati 1. Oleh karena itu, semua pengaruh antarvariabel dipastikan siginifikan dan variabel dipastikan kuat serta searah (positif). Artinya, peningkatan setiap variabel akan diikuti peningkatan variabel lainnya. Pengaruh antara variabel X (kualitas layanan) dengan Y₁ (efektivitas *e-toll*), variabel Y1 (efektivitas *e-toll*) dengan Y₂ (kepuasan pelanggan), dan Y₂ (loyalitas pelanggan) dengan Y₂ (kepuasan pelanggan) memiliki nilai korelasi yang tinggi karena nilai r antara 0.60–0.80. Sedangkan pengaruh antara variabel X (kualitas layanan) dengan Y₂ (kepuasan pelanggan), variabel X (kualitas layanan) dengan Y₂ (loyalitas pelanggan) memiliki nilai korelasi yang cukup karena nilai r antara 0.40–0.60. Sementara itu, variabel Y₁ (efektivitas e-toll) dengan variabel Y₃ (loyalitas pelanggan) memiliki nilai korelasi yang rendah karena nilai r berada di antara 0.20-0.40 (0,390). Semua variabel berkorelasi positif. Korelasi antardua variabel eksogen dan endogen harus signifikan dan semuanya sudah dapat dipenuhi.

Tabel 3.7 Uji Korelasi

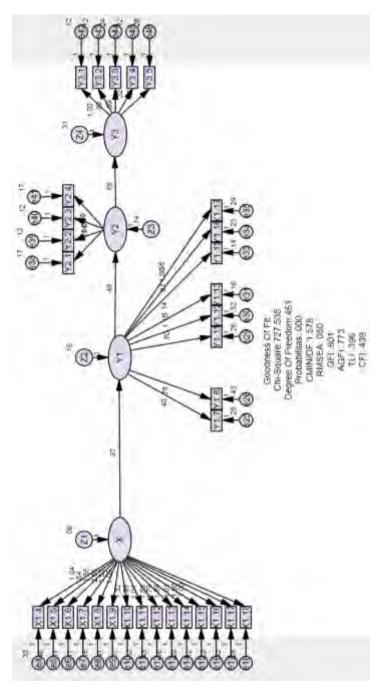
			Estimate
Χ	<>	Y1	.668
Χ	<>	Y2	.566
Χ	<>	Y3	.424
Y1	<>	Y2	.641
Y1	<>	Y3	.390
Y3	<>	Y2	.622

Sumber: Lampiran, telah diolah kembali

Structural Equation Model (SEM)

Analisis SEM digunakan untuk mengetahui pengaruh antara konstruksi eksogen dengan konstruksi endogen, Pengujian *structural equation model* dilakukan dengan dua macam pengujian seperti halnya model *confirmatory factor analysis*

1. Uji Kesesuaian Model Goodness of Fit Test


Pengujian dilakukan dengan menggunakan parameter nilai kritis, sedangkan *output* dari *structural* dapat dilihat pada lampiran seperti ringkasan pada tabel 3.8

Tabel 3.8 Nilai Goodness of Fit dan Cut off Value

Kriteria	Hasil Uji Model	Nilai Kritis	Keterangan
X ² Chi square	727.535	Kecil, X^2 dengan df = 461 dengan α = 0.05	Tidak Baik
Probabilitas	0,000	≥ 0,05	Tidak Baik
Cmin/DF	1.578	≤ 2,00	Baik
RMSEA	0.050	≤ 0,08	Baik
GFI	0.801	≥ 0,90	Marginal
AGFI	0.773	≥ 0,90	Tidak Baik
TLI	0.396	≥ 0,95	Tidak Baik
CFI	0.439	≥ 0,95	Tidak Baik

Sumber: Lampiran, telah diolah kembali

Tabel di atas menunjukkan hasil uji model yang dibandingkan dengan nilai kritis. Terdapat dua indikator baik yaitu Cmin/DF dan RMSEA. Satu indikator marginal atau mendekati baik yaitu GFI. Lima indikator tidak baik, yaitu X² chi-square, probabilitas, AGFI, TLI, dan CFI. Adanya nilai goodness of fit dan cut off value yang tidak baik, maka peneliti perlu melakukan modification model. Model structural dapat dilihat pada gambar 3.5 untuk melakukan modifikasi model (modification indices/MI) dengan dasar teori yang kuat. Peneliti dapat merujuk pada covariances atau regression weight pada lampiran dimulai dengan angka yang terbesar.

Gambar 3.5 *Structural Model* Pengaruh Kualitas Layanan Terhadap Efektivitas *E-toll,* Kepuasan Pelanggan, dan Loyalitas Pelanggan.

Penjelasan atau *output* dari modifikasi model dapat dilihat pada bagian lampiran.

Tabel 3.9 Covariances

			M.L
e17	<->	e18	6.483
e45	C->	e46	9.172
e41	<->	e43	5.317
e40	<->	e43	4,777
e40	<->	e42	5.040
e39	<->	Y3	4.265
e39	<>	e46	8.649
e38	~>	e46	9.018
e38	<->	e45	4.038
e38	<->	e39	4,303
e35	<>	e40	4.685
e34	<>	e45	4.383
e33	<->	Y2	4.002
e33	<->	e46	8.582
e33	<->	e42	8,045
e31	<->	e46	6.689
e31	<->	e45	6.840
e31	<->	e44	4.246
e31	<->	e38	5.114
e31	<->	e35	9.013
e30	<>	e43	4.278
e30	<->	e33	4.010
e29	<>	e43	5.484
e29	<>	e42	4.405
e29	<->	e40	5.154
e29	<->	e34	5.207
e26	<->	e35	5,900
e26	<->	e34	4.516

			M.I.
e16	<->	e46	6.583
e16	<->	e33	5.264
e15	00	e33	4.015
e13	<->	e40	8,722
e12	c->	e40	9,329
e12	<->	e35	4.564
e12	<>	e30	4.243
e12	<>	e15	5.293
e12	<>	e13	12,592
ell	<>	e44	4.502
e11	<>	e42	5.007
e10	<->	e42	6,528
e10	<->	e41	4.134
e10	<->	e33	7.098
e10	<->	e16	4.766
e9	<->	e18	6.818
е9	<->	e39	4,341
e8	<->	e13	6.400
e8	<->	e12	6.379
e6	<>	e30	4.252
e6	<->	e7	4.699
e4	<>	e34	10.200
e4	<->>	e33	7.794
e4	<>	e15	5,523
e4	<>	e11	4.801
e4	<->	e5	4.097

Sumber: Lampiran, diolah

Berikut adalah variances (group number 1-default model) regression weights

		1	M.I.	Par Change
X1,18	<-	X(.)7	5.396	165
X1.18	1	Y1.8	4.012	.1)1
X1.18	Sein.	X1.9	5.509	152
X1.17	-	XI.18	5.211	176
Y3.5	-	Y3.4	6.267	-,348
Y3.5	-	Y2.1	7.302	,247
¥3.5	<	X1.9	4.077	131
¥3.4	1	¥3.5	4,894	-,120
Y3.4	150	Y2.4	4.063	.107
¥3.4	-	Y2.1	4.819	.148
Y3.2	-	YLAL	4,327	<109
¥3.1	nin-	XI.11	5,270	,128
Y2.4	1500	Y3.4	5,000	.244
Y2,4	-	XI.12	4.798	-114
Y2.3	-	YI.17	5.508	:106
¥2,3	-	YLII	6.335	,125
Y2.3	100	X132	9.125	.141

			M.I.	Par Change
Y2,2	Sec.	Y3,5	8,796	n 146
Y2.2	<-	X1.9	4.927	.,102
¥2.1	~	Y3,5	6.952	.141
Y1.17	K-	Y3.4	4,837	-319
Y1.17	<u>~</u>	Y2.1	4.400	.201
Y1.17	¢	YLS	4.121	120
Y1.16	-	Y3.4	5.505	.307
Y1.16	K	XI,11	4,216	-,139
¥1.16	24	X1.4	9.503	209
¥1.15	×-	Y2.3	4,770	142
YL15	4	Y2.1	5.652	-160
Y1,15	к <u>—</u>	X1,10	4,872	-300
Y1.15	~	XIA	5.993	.130
¥1.13	×-	Y3.5	5.998	142
Y1.13	~	Y3,4	6.895	-304
Y1.13	4	Y2.1	4.453	.163
Y1.11	-	X1/11	4.440	143
X1.15	K-	X1.12	4,209	095
X1.15	-	XLV	4.128	.106
X1.13	~	Y2,3	6.197	175
XJ.13	44	X1/12	10.683	.169
X1.12	<-	Y2.3	4.107	.215
X1.12	-	Y1.17	4.504	-164
X1.10	« —	Y1,15	5.398	-,207
X1.9	4	X1.48	5.178	-206
X1.9	i,	¥3.5	4.251	.168
XLS	×-	X1.32	5.080	-:109
X1.5	K-	Y2.4	4,262	.179
X1.5	-	Y1.16	4.755	.165

Modifikasi Model

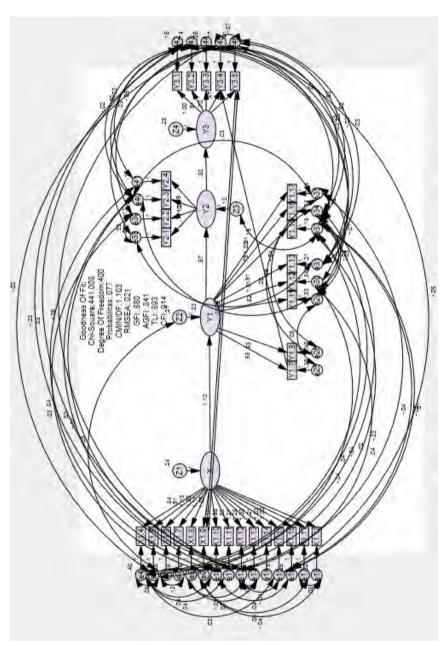
Uji Kesesuaian Model Goodness of Fit Test

Pengujian dilakukan dengan menggunakan parameter nilai kritis, sedangkan *output* dari *confirmatory factor analysis* dapat dilihat pada lampiran seperti ringkasan tabel 4.16

Tabel 3.10 Nilai Goodness of Fit dan Cut off Value

Kriteria	Hasil Uji Model	Nilai Kritis	Keterangan
X ² Chi square	441.008	Kecil, X^2 dengan df = 400 dengan α = 0,05	Baik
Probabilitas	0,077	≥ 0,05	Baik
Cmin/DF	1.103	≤ 2,00	Baik
RMSEA	0.021	≤ 0,08	Baik
GFI	0.880	≥ 0,90	Marginal
AGFI	0.841	≥ 0,90	Marginal
TLI	0.893	≥ 0,95	Marginal
CFI	0.914	≥ 0,95	Marginal

Sumber: Lampiran, telah diolah kembali


Pada tabel di atas disajikan nilai-nilai model *fit* hasil modifikasi dari *output modification model*. Dari hasil di atas dijelaskan bahwa semua indikator telah memenuhi kriteria, karena semua bernilai baik. Dua indikator bernilai marginal (mendekati baik), sehingga model dapat diasumsikan *fit*. Modifikasi model dapat dilihat pada gambar 3.6.

Tabel 3.11 Regression Weights (Uji Signifikan)

			Estimate	S.E.	C.R.	2.SE	P	Ket	Estimate Standardized Regression Weight
Y1	<	X	1.128	0.161	7.023	2.256	***	Signifikan	0.775
Y2	<	Y1	0.673	0.09	7.479	1.346	***	Signifikan	0.806
Y3	<	Y2	0.804	0.12	6.687	1.608	***	Signifikan	0.696

Sumber: Lampiran, telah diolah kembali

Pada tabel di atas menujukkan bahwa semua variabel memiliki nilai C.R > 2.SE, sehingga variabel/konstruksi yang diestimasi tersebut adalah valid. Variabel-variabel yang valid tersebut adalah variabel kualitas layanan terhadap efektivitas *e-toll*, efektivitas *e-toll* terhadap kepuasan pelanggan, dan variabel kepuasan layanan terhadap loyalitas pelanggan.

Gambar 3.6 *Modification Model* Pengaruh Kualitas Layanan Terhadap Efektivitas *E-toll,* Kepuasan Pelanggan, dan Loyalitas Pelanggan

2. Uji Signifikan

Variabel dapat digunakan untuk mengonfirmasi sebuah variabel laten dan variabel lainnya dengan menggunakan tahapan analisis bobot faktor (regression weight). Kekuatan setiap dimensi dapat membentuk variabel laten. Variabel tersebut dapat dianalisis dengan menggunakan uji-t terhadap regression weight (dapat dilihat pada tabel 3.11). C.R atau critical ratio identik dengan t-hitung dalam analisis regresi, oleh karena itu C.R harus dibandingkan dengan t-tabel. Apabila C.R harus lebih besar dari t-tabel (t-hitung > t-tabel), maka variabel secara signifikan merupakan dimensi dari variabel laten. Pada tabel-t, level 0,05 dengan df = 32 (jumlah seluruh indikator) didapatkan nilai t sebesar 1.6938. Maka, dapat disimpulkan bahwa indikator tersebut secara signifikan merupakan dimensi dari variabel laten yang dibentuk.

Pada tabel 3.11 menjelaskan bahwa semua variabel memiliki nilai *t*-hitung > *t*-tabel. Jadi, dapat diartikan bahwa semua variabel yang diestimasi tersebut signifikan. Variabel-variabel yang signifikan tersebut adalah variabel kualitas layanan terhadap efektivitas *e-toll*, efektivitas *e-toll* terhadap kepuasan pelanggan, dan variabel kepuasan layanan terhadap loyalitas pelanggan.

Interpretasi Model

Estimasi modifikasi telah dilakukan terhadap model yang dikembangkan. Apabila hasil estimasi model memiliki nilai residual yang besar, maka langkah-langkah modifikasi dapat dihentikan jika nilai residual -2,58 ≤ residual ≤ 2,58 (Waluyo [2016]). Output standarized residual covariance untuk modification model yang terdapat pada gambar 3.6 memperlihatkan nilai residual yang dihasilkan. Dari hasil yang didapatkan sebagian data belum mencapai nilai optimal, karena hasil yang berada di luar residual -2,58 ≤ residual ≤ 2,58. Jika hasil belum mencapai nilai optimal tetapi sudah dianggap cukup karena nilai GFI, AGFI, dan TLI sudah marginal dan memudahkan aplikasi tindakan di lapangan, maka semakin banyak trail yang dilakukan dianggap menyulitkan aplikasi di lapangan.

Tabel 3.12 Standarized Residual Covariance

	Y3.5	X1.9	Y1.7	X1.18	X1.17	Y3.4	Y3.3	Y3.2	Y3.1	Y2.4
Y3.5	2.641									
X1.9	2.042	4.168								
Y1.7	1.605	1.614	3.422							
X1.18	4.099	2.261	3.773	5.842						
X1.17	3.431	3.576	4.566	3.631	5.658					
Y3.4	4.474	1.81	5.332	10.118	5.879	13.38				
Y3.3	2.525	3.063	3.578	6.737	5.247	10.961	6.174			
Y3.2	2.325	1.741	3.293	4.947	4.111	4.844	3.239	2.991		
Y3.1	2.974	1.054	3.383	5.102	3.552	5.334	3.309	3.325	3.236	
Y2.4	2.608	1.597	2.945	4.827	3.724	10.039	6.906	2.981	2.81	4.651
Y2.3 Y2.2	3.382 2.547	2.973 3.348	2.187	4.557	3.206 5.217	7.266 7.094	4.386 4.735	2.269	2.142	3.898
Y2.1	3.68	3.129	2.92 2.346	5.693 5.483	5.54	9.252	6.793	2.804 3.329	2.008 2.549	4.286 5.205
Y1.17	1.099	3.698	1.043	1.28	3.122	1.236	2.734	0.372	0.372	2.277
Y1.16	1.018	2.113	1.652	2.899	1.809	2.57	1.83	1.222	1.397	1.354
Y1.15	1.613	1.197	2.188	4.94	3.301	7.885	5.426	2.549	2.908	3.64
Y1.13	-0.137	0.523	-0.062	2.539	-0.597	5.008	3.017	-0.249	-0.276	2.064
Y1.12	0.24	1.376	1.442	3.656	1.074	2.788	2.842	0.92	0.72	1.457
Y1.11	1.551	0.77	1.585	2.704	2.593	4.659	2.885	1.748	1.809	1.972
Y1.8	-0.882	-0.964	-0.006	2.672	-1.177	3.582	1.548	0.316	-0.251	1.853
X1.16 X1.15	3.564 2.2	1.071 0.518	1.456 1.319	2.979 1.905	4.875 2.236	5.426 6.349	4.248 4.178	2.823 0.923	3.038 1.293	2.068 2.645
X1.14 X1.13	2.458 1.626	0.871 1.617	1.519 2.285	1.714 0.966	1.539	6.023 6.376	3.796 3.901	1.186 0.378	1.231 1.014	2.331 2.545
X1.13 X1.12	3.104	3.013	2.285	1.378	2.637 4.026	6.376 7.044	5.103	1.733	2.671	3.566
X1.12 X1.11	2.638	4.434	3.646	3.271	3.891	6.885	5.543	2.741	2.766	3.181
X1.11 X1.10	3.241	3.793	1.521	3.323	3.093	3.833	3.061	2.741	2.549	1.712
X1.10 X1.8	3.203	0.764	3.261	4.118	1.193	7.771	3.999	3.602	3.529	2.554
			1.971	2.191				2.228	2.527	1.043
X1.7	1.59	0.438			0.833	4.127	2.649			
X1.6	1.436	-0.075	3.589	1.598	1.394	5.904	3.942	2.593	2.984	2.307
X1.6 X1.5	1.436 1.417	-0.075 4.01	3.589 3.286	1.598 2.261	1.394 3.448	5.904 3.802	3.942 3.218	2.593 1.621	2.984 1.559	2.307 2.916
X1.6 X1.5 X1.4	1.436	-0.075	3.589	1.598 2.261 4.174	1.394 3.448 3.275	5.904	3.942 3.218 6.178	2.593	2.984	2.307
Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1	1.436 1.417 1.413	-0.075 4.01 3.199	3.589 3.286 2.732	1.598 2.261 4.174	1.394 3.448 3.275	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4	1.436 1.417 1.413 Y2.3	-0.075 4.01 3.199	3.589 3.286 2.732	1.598 2.261 4.174	1.394 3.448 3.275	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3	1.436 1.417 1.413 Y2.3	-0.075 4.01 3.199 Y2.2	3.589 3.286 2.732	1.598 2.261 4.174	1.394 3.448 3.275	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4	1.436 1.417 1.413 Y2.3	-0.075 4.01 3.199	3.589 3.286 2.732	1.598 2.261 4.174	1.394 3.448 3.275	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.4 Y2.3 Y2.2	1.436 1.417 1.413 Y2.3	-0.075 4.01 3.199 Y2.2	3.589 3.286 2.732 Y2.1	1.598 2.261 4.174	1.394 3.448 3.275	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68	1.598 2.261 4.174 Y1.17	1.394 3.448 3.275 Y1.16 Y1	5.904 3.802 7.81	3.942 3.218 6.178	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.2 Y3.1 Y2.4 Y2.2 Y2.1 Y1.17 Y1.16 Y1.16 Y1.16 Y1.16	1.436 1.417 1.413 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231	1.598 2.261 4.174 Y1.17 2.963 1.678 1.519	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077	5.904 3.802 7.81 .15 Y1.13	3.942 3.218 6.178 Y1.12	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 73.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.17 Y1.16 Y1.17 Y1.17 Y1.17	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984	2.963 1.519 2.963 1.678 1.519 1.199	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3 0.831 2	5.904 3.802 7.81 .15 Y1.13	3.942 3.218 6.178 Y1.12	2.593 1.621 2.45	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 Y3.4 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16 Y1.15 Y1.16 Y1.15 Y1.16 Y1.15	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984	2.963 1.678 1.578 2.963 1.678 1.519 1.199	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.00831 1.419 2.1	5.904 3.802 7.81 1.15 Y1.13	3.942 3.218 6.178 Y1.12	2.593 1.621 2.45 Y1.11	2.984 1.559 2.738	2.307 2.916 4.054
X1.6 X1.5 X1.4 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.2 Y2.2 Y2.1 Y1.15 Y1.15 Y1.15 Y1.15 Y1.15 Y1.11	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284	2.963 1.678 1.519 1.519 1.519 1.519 1.519 1.519 1.519	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0831 2.11419 2.1.144 3.3	5.904 3.802 7.81 15 Y1.13 15 Y1.13 85 3.253 3.45 2.407 383 1.765	3.942 3.218 6.178 Y1.12	2.593 1.621 2.45 Y1.11	2.984 1.559 2.738 Y1.8	2.307 2.916 4.054
X1.6 X1.5 X1.4 73.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16 Y1.17 Y1.16 Y1.17 Y1.18 Y1.18 Y1.19 Y1.11 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.17 Y1.18 Y1.19 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.16 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.10 Y1.10 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.13 Y1.15 Y1.16 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.15 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.13 Y1.11 Y1	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383	4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 1.253	2.963 1.678 1.678 1.678 1.519 1.199 1.584 0.311 0.253	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0831 7.1419 2.1.144 3.0.932 1.144 3.0.932	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13	3.942 3.218 6.178 Y1.12	2.593 1.621 2.45 Y1.11	2.984 1.559 2.738 Y1.8	2.307 2.916 4.054 X1.16
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16 Y1.15 Y1.16 Y1.15 Y1.16 Y1.15 Y1.16 Y1.15 Y1.11 Y1.8 X1.16	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123 3.163	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 4.812	2.963 1.678 2.963 1.678 1.519 1.584 0.311 0.253 0.424	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0381 1.419 2.1.144 3.0.932 1.0384 1.384	5.904 3.802 7.81 1.15 Y1.13 3.155 3.155 3.155 3.155 596 -0.504	3.942 3.218 6.178 Y1.12 2.405 1.074 2.099 -1.073	2.493 V1.11 2.45 V1.11	2.984 1.559 2.738 Y1.8	2.307 2.916 4.054 X1.16
X1.6 X1.5 X1.4 73.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16 Y1.17 Y1.16 Y1.17 Y1.18 Y1.18 Y1.19 Y1.11 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.17 Y1.18 Y1.19 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.16 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.10 Y1.10 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.13 Y1.15 Y1.16 Y1.17 Y1.18 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.19 Y1.11 Y1.11 Y1.11 Y1.11 Y1.12 Y1.15 Y1.11 Y1.11 Y1.12 Y1.11 Y1.11 Y1.12 Y1.13 Y1.11 Y1	1.436 1.417 1.413 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383	4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 1.253	2.963 1.678 1.519 1.678 1.519 1.199 1.584 0.311 0.253 0.424 0.289	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 2.077 2.1144 3.0.932 1.0.932 1.0.932 1.0.932 1.0.384 1.0.213 1.0.213	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13	3.942 3.218 6.178 Y1.12 2.405 1.074 2.09 -1.073 -0.497	2.593 1.621 2.45 Y1.11	2.984 1.559 2.738 Y1.8	2.307 2.916 4.054 X1.16
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y1.17 Y1.16 Y1.15 Y1.11 Y1.15 Y1.11 Y1.15 X1.16 X1.15 X1.15	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979	-0.075 4.01 3.199 Y2.2 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123 3.163 2.806	3.589 3.286 2.732 Y2.1 Y2.1 4.68 3.231 1.512 2.284 1.253 4.812 4.705	2.963 1.678 1.519 1.678 1.519 1.199 1.584 0.311 0.253 0.424 0.289 0.177	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0831 2.1.1419 2.1.144 3.0.932 1.0.384 1.0.032 1.1.0739 1.1.0739	5.904 3.802 7.81 15 Y1.13 15 Y1.13 85 3.253 345 2.407 383 1.765 868 3.157 596 -0.504 081 0.57	3.942 3.218 6.178 Y1.12 2.405 1.074 2.09 -1.073 -0.497 -0.192	2.493 V1.11 2.45 V1.11	2.984 1.559 2.738 Y1.8 	2.307 2.916 4.054 X1.16 3.757 3.475
X1.6 X1.5 X1.4 X1.5 X1.4 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.2 Y3.1 Y2.4 Y2.2 Y2.1 Y1.15 Y1.15 Y1.15 Y1.15 Y1.16 Y1.16 Y1.17 Y1.18 X1.16 X1.16 X1.17 X1.18 X1.17 X1.18 X1.19 X1.11	1.436 1.417 1.413 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.239 3.239 3.154	4.136 4.771 3.144 4.136 4.771 3.144 2.816 1.478 1.655 2.813 2.123 3.163 2.806 2.89	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 1.253 4.812 4.705 3.585	2.963 1.678 2.261 4.174 Y1.17 2.963 1.678 1.519	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 0.831 1.419 2.1144 3.0.932 1.10.384 1.0.213 1.0.213 1.0.739 1.0.395 1.0.395	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .15 Y1.13 .17 S S S S S S S S S S S S S S S S S S S	2.405 1.074 2.09 -1.073 -0.497 -0.192 -1.245	2.403 0.867 1.556 0.615 0.399	2.984 1.559 2.738 Y1.8 Y1.8 -1.577 -0.672 0.689	2.307 2.916 4.054 X1.16 3.757 3.475 2.275
X1.6 X1.5 X1.4 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.17 Y1.16 Y1.18 Y1.19 Y1.11 Y1.11 Y1.12 Y1.13 Y1.12 Y1.13 Y1.14 X1.15 X1.16 X1.15 X1.16 X1.17 X1.18 X1.17 X1.18 X1.19 X1.19 X1.11	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.154 2.401 3.769 4.591	-0.075 4.01 3.199 Y2.2 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 2.123 3.163 2.123 3.163 2.123 3.163 2.123 3.163 3.	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.253 4.812 4.705 3.585 3.189 5.789 5.602	2.963 1.678 1.598 2.261 4.174 Y1.17 2.963 1.678 1.519 1.199 1.199 0.253 0.424 0.289 0.177 0.424 0.289 0.177 0.315 2.198	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0.831 1.419 2.1.144 3.0.332 1.0.213 1.0.213 1.0.213 1.0.739 1.0.395 0.0771 1.15	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .16 Y1.13 .17 Y1.13 .1	2.405 1.074 2.09 1.074 2.09 1.073 -0.497 -0.192 1.1245 -0.323	2.493 1.621 2.45 Y1.11 2.403 0.867 1.556 0.615 0.399 -0.099	2.984 1.559 2.738 Y1.8 Y1.8 -2.775 -1.577 -0.672 0.689 -0.104	2.307 2.916 4.054 X1.16 3.757 3.475 2.275 2.823
X1.6 X1.5 X1.4 	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.239 3.239 3.154 2.401 3.769 4.591 2.737	4.136 4.771 3.144 2.816 1.478 1.655 2.89 2.123 3.163 2.806 2.89 2.178 3.189 3.607 2.756	3.589 3.286 2.732 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 4.705 3.585 3.189 5.789 5.789 5.789 5.602 3.665	2.963 1.678 1.678 1.678 1.519 1.199 1.584 0.283 0.424 0.289 0.177 0.315 2.198 3.062 1.549	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0831 7.1419 2.1.144 3.0932 1.140 0.393 1.0.394 1.0.395 0.0.771 1.0.395 0.0771 1.2.2007 2.1.477 2.1.477	5.904 3.802 7.81 1.15 Y1.13 1.15 Y1.13	2.405 1.074 2.09 -1.073 -0.497 -0.323 1.766 0.269	2.403 0.867 1.556 0.619 0.099 0.888 1.181 0.376	2.984 1.559 2.738 Y1.8 Y1.8 -2.775 -1.577 -0.672 -0.689 -0.104 -0.996 -0.923 -0.728	2.307 2.916 4.054 X1.16 3.757 3.475 2.275 2.823 3.205 2.609 1.9
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.16 Y1.15 Y1.16 X1.16 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.11 X1.10 X1.10 X1.10 X1.8	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.239 3.154 2.401 3.769 4.591 2.737 3.587	-0.075 4.01 3.199 Y2.2 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.1128 3.163 2.806 2.89 2.1728 3.189 3.607 2.756 3.031	3.589 3.286 2.732 Y2.1 Y2.1 4.68 3.636 1.68 3.231 1.984 1.512 2.284 1.253 4.705 3.585 3.3189 5.789 5.602 3.665 4.785	2.963 1.678 1.678 1.519 1.584 0.311 0.253 0.424 0.289 0.177 0.315 2.198 3.062 1.549 0.067	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0831 2.1144 3.0,032 1.0.213 1.0.213 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213 1.0.739 1.0.213	5.904 3.802 7.81 1.15 Y1.13 1.15 Y1.13	2.405 1.074 2.09 1.176 0.269 1.129	2.403 0.867 1.556 0.615 0.399 -0.099 0.858 1.181 -0.376	2.984 1.559 2.738 Y1.8 Y1.8 -1.577 -0.672 0.689 -0.104 -0.996 -0.923 -0.728 0.584	2.307 2.916 4.054 X1.16 3.757 3.475 2.275 2.2823 3.205 2.609 2.343
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.3 Y2.2 Y2.1 Y1.17 Y1.15 Y1.13 Y1.16 X1.16 X1.16 X1.17 X1.10 X1.18 X1.10 X1.8 X1.7	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.154 2.401 3.769 4.591 2.737 3.587 0.828	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123 3.163 2.806 2.89 2.178 3.189 3.607 2.756 3.031 1.063	3.589 3.286 2.732 Y2.1 Y2.1 4.6454 3.636 1.68 3.231 1.984 1.253 4.812 4.705 3.585 3.189 5.602 3.665 4.785 2.103	2.963 1.678 1.519 1.199	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 2.1144 3.0932 1.0,394 1.0,213 1.419 2.2,077 2.1,147 0.0,051 2.0,077 2.1,477 0.0,0551 2.0,008	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .16 Y1.13 .17 Y1.13 .1	2.405 1.074 2.09 -1.073 -0.497 -1.245 -0.323 1.766 0.269 1.129 0.992	2.493 2.495 Y1.11 2.495 2.403 0.867 1.556 0.615 0.399 -0.099 8.588 1.181 -0.376 2.061 0.902	2.775 2.775 -1.577 -0.672 0.689 -0.104 -0.996 -0.923 -0.728 0.584 -0.551	2.307 2.916 4.054 X1.16 X1.16 3.757 3.475 2.275 2.823 3.205 2.609 1.9 2.343 1.043
X1.6 X1.5 X1.4 73.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.3 Y3.2 Y3.1 Y2.4 Y2.2 Y2.1 Y1.15 Y1.15 Y1.15 Y1.15 Y1.11 Y1.18 X1.16 X1.16 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.17 X1.18 X1.10 X1.11 X1.11 X1.12 X1.11 X1.12 X1.12 X1.11 X1.12 X1.12 X1.13 X1.14 X1.15 X1.16 X1.17 X1.18 X1.10 X1.11 X1.11 X1.12 X1.11 X1.12 X1.15 X1.16 X1.17 X1.18 X1.10 X1.11 X1.11 X1.11 X1.12 X1.11 X1.12 X1.15 X1.16 X1.17 X1.18 X1.10 X1.11 X1.11 X1.12 X1.15 X1.11 X1.11 X1.12 X1.15 X1.16 X1.17 X1.18 X1.10 X1.8 X1.10 X1.8 X1.11 X1.11 X1.12 X1.15 X1.17 X1.18 X1.17 X1.18 X1.19 X1.10 X1.8 X1.10 X1.8 X1.11 X1.11 X1.12 X1.15 X1.16 X1.17 X1.18 X1.17 X1.18 X1.19 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.10 X1.8 X1.7 X1.8 X1.7 X1.8 X1.9 X1	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.154 2.401 3.769 4.591 2.737 3.587 0.828 2.716	4.136 4.771 3.144 2.816 1.478 1.659 2.123 3.163 2.89 2.178 3.189 3.607 2.756 3.031 1.063 2.061	3.589 3.286 2.732 Y2.1 Y2.1 6.454 3.636 1.68 3.231 1.984 1.512 2.284 1.253 4.812 4.705 3.585 3.189 5.789 5.602 3.665 4.785 2.103 4.01	2.963 1.678 1.678 1.519 1.199 1.584 0.311 0.253 0.424 0.289 0.177 0.315 2.198 3.062 1.549 0.067 0.0023 1.225	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.831 2.1.149 2.1.144 3.0.932 1.1.49 2.0.384 1.0.795 1.0.395 0.0.771 1.2.007 2.007 2.1.477 0.0651 2.0.008 0.0333 2.3.488	5.904 3.802 7.81 1.15 Y1.13 1.15 Y1.13	2.405 1.074 2.09 -1.073 -0.497 -1.245 -0.323 1.766 0.269 1.129	2.403 0.867 1.556 0.615 0.399 0.099 0.888 1.181 0.376 2.061 0.902 2.372	2.775 -1.577 -0.672 -0.104 -0.993 -0.728 -0.584 -0.651 -0.2	2.307 2.916 4.054 X1.16 X1.16 3.757 3.475 2.275 2.823 3.205 2.609 1.9 2.343 1.043
X1.6 X1.5 X1.4 Y3.5 X1.9 Y1.7 X1.18 X1.17 Y3.4 Y3.2 Y3.1 Y2.4 Y2.2 Y2.3 Y2.2 Y2.1 Y1.15 Y1.15 Y1.15 Y1.15 Y1.15 X1.16 X1.16 X1.16 X1.11 X1.10 X1.11 X1.10 X1.11 X1.12 X1.11 X1.11 X1.11 X1.11 X1.11 X1.11 X1.11 X1.11 X1.12 X1.11 X1.11 X1.11 X1.11 X1.11 X1.12 X1.11 X1.11 X1.12 X1.11 X1.11 X1.12 X1.11 X1.12 X1.11 X1.12 X1.11 X1.12 X1.11 X1.12 X1.13 X1.14 X1.15 X1.16 X1.17 X1.17 X1.10 X1.10 X1.11 X1.10 X1.11 X1.10 X1	1.436 1.417 1.413 Y2.3 Y2.3 Y2.3 Y2.3 4.262 3.882 5.834 2.627 2.564 3.425 2.088 1.134 2.145 1.383 2.979 3.154 2.401 3.769 4.591 2.737 3.587 0.828	-0.075 4.01 3.199 Y2.2 4.136 4.771 3.144 2.816 3.886 1.478 1.655 1.993 2.123 3.163 2.806 2.89 2.178 3.189 3.607 2.756 3.031 1.063	3.589 3.286 2.732 Y2.1 Y2.1 4.6454 3.636 1.68 3.231 1.984 1.253 4.812 4.705 3.585 3.189 5.602 3.665 4.785 2.103	2.963 1.678 1.519 2.963 1.678 1.519 1.584 0.311 0.253 0.424 0.289 0.177 0.253 0.424 0.289 0.175 0.426 0.289 0.175 0.315 2.198 3.062 1.549 0.067 0.023 3.062 1.549 0.067	1.394 3.448 3.275 Y1.16 Y1 1.779 2.077 3.0,831 1.419 2.1,144 3.0,932 1.0,133 1.0,213	5.904 3.802 7.81 .15 Y1.13 .15 Y1.13 .16 Y1.13 .17 Y1.13 .1	2.405 1.074 2.09 -1.073 -0.492 -1.245 -0.323 1.766 0.269 1.129 0.992 1.299	2.493 2.495 Y1.11 2.495 2.403 0.867 1.556 0.615 0.399 -0.099 8.588 1.181 -0.376 2.061 0.902	2.775 2.775 -1.577 -0.672 0.689 -0.104 -0.996 -0.923 -0.728 0.584 -0.551	2.307 2.916 4.054 X1.16 X1.16 3.757 3.475 2.275 2.823 3.205 2.609 1.9 2.343 1.043

	X1.16	X1.15	X1.14	X1.13	X1.12	X1.11	X1.10	X1.8	X1.7	X1.6	X1.5	X1.4
Y3.5												
X1.9												
Y1.7												
X1.18												
X1.17												
Y3.4												
Y3.3												
Y3.2												
Y3.1												
Y2.4												
Y2.3												
Y2.2												
Y2.1												
Y1.17												
Y1.16												
Y1.15												
Y1.13												
Y1.12												
Y1.11												
Y1.8												
X1.16	3.757											
X1.15	3.475	3.983										
X1.14	2.275	4.167	3.444									
X1.13	2.823	4.101	3.659	3.983								
X1.12	3.205	4.072	3.176	4.122	4.397							
X1.11	2.609	2.754	1.341	3.398	5.461	5.021						
X1.10	1.9	1.473	0.947	1.329	3.023	4.077	2.774					
X1.8	2.343	1.569	1.298	1.541	2.741	2.399	1.45	4.558				
X1.7	1.043	0.33	0.346	0.358	2.032	1.245	1.334	3.624	2.352			
X1.6	1.408	1.069	0.769	1.426	3.002	2.847	0.505	4.357	2.553	3.502		
X1.5	0.927	0.452	0.666	0.875	3.272	3.168	2.697	1.516	1.241	1.761	2.984	
X1.4	1.36	2.042	2.251	2.882	2.481	3.38	2.336	1.067	1.262	0.977	2.639	3.999
	X1.16	X1.15	X1.14	X1.13	X1.12	X1.11	X1.10	X1.8	X1.7	X1.6	X1.5	X1.4
X1.16	3.757											
X1.15	3.475	3.983										
X1.14	2.275	4.167	3.444									
X1.13	2.823	4.101	3.659	3.983								
X1.12	3.205	4.072	3.176	4.122	4.397							
X1.11	2.609	2.754	1.341	3.398	5.461	5.021						
X1.10	1.9	1.473	0.947	1.329	3.023	4.077	2.774					
X1.8	2.343	1.569	1.298	1.541	2.741	2.399	1.45	4.558				
X1.7	1.043	0.33	0.346	0.358	2.032	1.245	1.334	3.624	2.352			
X1.6	1.408	1.069	0.769	1.426	3.002	2.847	0.505	4.357	2.553	3.502		
X1.5	0.927	0.452	0.666	0.875	3.272	3.168	2.697	1.516	1.241	1.761	2.984	
X1.4	1.36	2.042	2.251	2.882	2.481	3.38	2.336	1.067	1.262	0.977	2.639	3.999
A1.4	1.30	2.042	2.231	2.002	2.401	3.30	2.330	1.007	1.202	0.311	2.033	3.333

3. Uji Reliabilitas

Uji reliabilitas bertujuan untuk menunjukkan model dengan setiap indikator yang memiliki ketepatan derajat kesesuaian. Konstruksi dianggap reliabel apabila nilai reliabilitas konstruksi pada setiap variabel bernilai ≥ 0,70 (dapat dilihat pada tabel 4.19). Hasil uji realibilitas konstruksi yang didapatkan lebih dari lebih dari ≥0.70.

Tabel 4.19 Uji Reliabilitas

Variabel	Kualitas La	nyanan (X)	Efektivitas F	Efektivitas E-Toll (Y1) Kepuasan Pelanggan (Y2)		Loyalitas Pel	Loyalitas Pelanggan (Y3)	
Indikator	Konstrak	Error	Konstrak	Error	Konstrak	Error	Konstrak	Error
KL 4 (X1.4)	0.551	0.449						
KL 5 (X1.5)	0.511	0.489						
KL 6 (X1.6)	0.736	0.264						
KL 7 (X1.7)	0.756	0.244						
KL 8 (X1.8)	0.81	0.19						
KL 9 (X1.9)	0.584	0.416						
KL 10 (X1.10)	0.633	0.367						
KL 11 (X1.11)	0.621	0.379						
KL 12 (X1.12)	0.474	0.526						
KL 13 (X1.13)	0.766	0.234						
KL14 (X1.14)	0.823	0.177						
KL 15 (X1.15)	0.861	0.139						
KL 16 (X1.16)	0.764	0.236						
KL 17 (X1.17)	0.647	0.353						
KL 18 (X1.18)	0.657	0.343						
EE 7 (YI.7)			0.588	0.412				
EE 8 (YI.8)			0.521	0.479				
EE 11 (YI.11)			0.719	0.281				
EE 12 (YI.12)			0.78	0.22				
EE 13 (YI.13)			0.817	0.183				
EE 15 (YI.15)			0.801	0.199				
EE 16 (YI.16)			0.778	0.222				
EE 17 (YI.17)			0.703	0.297				
KP1 (Y2.1)					0.711	0.289		
KP2 (Y2.2)					0.827	0.173		
KP3 (Y2.3)					0.864	0.136		
KP4 (Y2.4)					0.808	0.192		
LP1 (Y3.1)							0.869	0.131
LP2 (Y3.2)							0.858	0.142
LP3 (Y3.3)							0.691	0.309
LP4 (Y3.4)							0.577	0.423
LP5 (Y3.5)							0.553	0.447
Jumlah standart Loading	10.194		5.707		3.21		3.548	
Jumlah error		4.806		2.293		0.79		1.452
RELIABILITAS KONSTRUK	0.9557	79618	0.9342	2798	0.928790979		0.896583436	
Keterangan	Reli	abel	Relia	ibel	Reli	abel	Reli	abel

Variabel	Kualitas La	ayanan (X)	Efektivitas	E-Toll (Y1)	Kepuasan Pelanggan (Y2)		Loyalitas Pel	anggan (Y3)
Indikator	Konstrak	Error	Konstrak	Error	Konstrak	Error	Konstrak	Error
EE 7 (YI.7)			0.588	0.412				
EE 8 (YI.8)			0.521	0.479				
EE 11 (YI.11)			0.719	0.281				
EE 12 (YI.12)			0.78	0.22				
EE 13 (YI.13)			0.817	0.183				
EE 15 (YI.15)			0.801	0.199				
EE 16 (YI.16)			0.778	0.222				
EE 17 (YI.17)			0.703	0.297				
KP1 (Y2.1)					0.711	0.289		
KP2 (Y2.2)					0.827	0.173		
KP3 (Y2.3)					0.864	0.136		
KP4 (Y2.4)					0.808	0.192		
LP1 (Y3.1)							0.869	0.131
LP2 (Y3.2)							0.858	0.142
LP3 (Y3.3)							0.691	0.309
LP4 (Y3.4)							0.577	0.423
LP5 (Y3.5)							0.553	0.447
Jumlah standart Loading	10.194		5.707		3.21		3.548	
Jumlah error		4.806		2.293		0.79		1.452
RELIABILITAS KONSTRUK	0.955	79618	0.93422798		0.928790979		0.896583436	
Keterangan	Reli	abel	Reli	abel	Reliabel		Reliabel	

Persamaan Simultan

Persamaan simultan dari model yang dibuat dalam penelitian ini sebagai berikut (Asumsi Z1 sampai Z4 = 0).

- 1. Y1 = f(X) + Z2
- 2. Y1 = 0.775 X + Z2Efektivitas e-toll = f (Kualitas Layanan) + Z2
- 3. Y2 = ff(Y1) + Z3
- 4. Y2 = 0.806 (0.775 X) + Z3
- 5. Y2 = 0.625 X + Z3Kepuasan pelanggan = f (Kualitas Layanan) + Z3
- 6. $Y3 = fff(Y_2) + Z4$
- 7. Y3 = 0.696(0.625 X) + Z4
- 8. Y3 = 0.435 X + Z4

Proses terjadinya variabel eksogen awal (X) dari bentukan X_1 , X_2 , X_3 , X_4 , dan X_5 membuat koefisien regresinya tidak terpecah. Hal ini berdampak terhadap susunan regresi, sehingga memperoleh nilai koefisien yang besar (tetap signifikan). Terpecahnya koefisien regresinya (lebih dari satu variabel eksogen) menyebabkan koefisien regresi semakin kecil dan tidak signifikan.

4. Uji Hipotesis

Pengujian hipotesis dilakukan dengan cara membandingkan nilai t-hitung yaitu nilai CR dengan nilai t-tabel sebesar 1.6938 serta menunjukkan nilai dari koefisien regresinya. Jika nilai CR lebih kecil dari 1.6938 maka H_0 diterima, tetapi jika nilai CR lebih besar dari 1.6938 maka H_0 ditolak. Apabila H_0 ditolak maka H_1 dapat diterima dan begitu sebaliknya. Adapun hasil hipotesis dari penelitian ini sebagai berikut.

Hipotesis Ke - 1

H₀: kualitas layanan tidak memiliki pengaruh yang signifikan terhadap efektifitas *e-toll*.

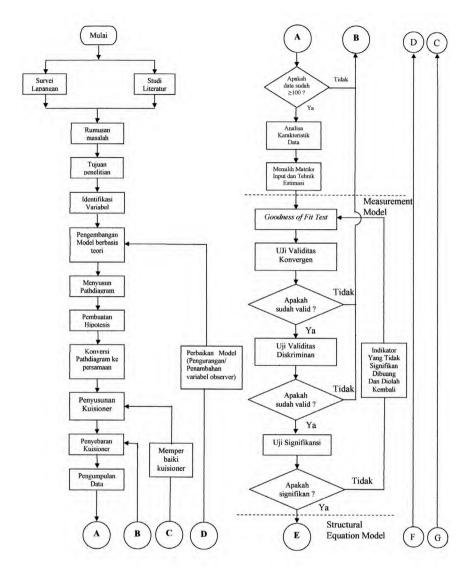
H₁: kualitas layanan memiliki pengaruh yang signifikan terhadap Efektifitas *e-toll*.

Hasil uji hipotesis disajikan pada tabel 4.18. Pada tabel tersebut dapat diketahui bahwa pengaruh kualitas layanan terhadap efektifitas *e-toll* didapatkan nilai CR sebesar 7.023 dan *t*-tabel sebesar 1.6938 (*t*-hitung > *t*-tabel). Maka, dalam hipotesis ini H₁ diterima yaitu kualitas layanan memiliki pengaruh yang signifikan terhadap efektivitas *e-toll*. Pengaruh kualitas layanan terhadap efektivitas *e-toll* memiliki koefisien regresi sebesar 0.775 yang berarti keduanya memiliki pengaruh positif dan signifikan.

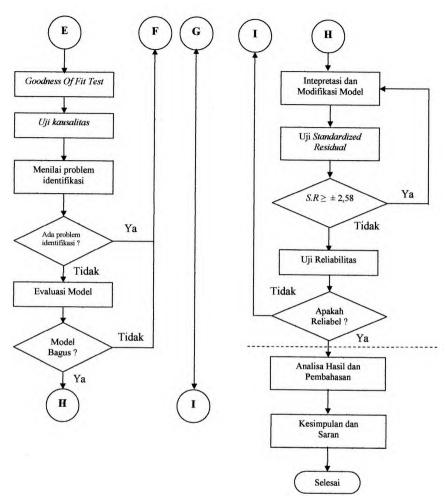
Hipotesis Ke - 2

H₀: efektivitas *e-toll* tidak memiliki pengaruh yang signifikan terhadap kepuasan pelanggan.

H₁: efektivitas *e-toll* memiliki pengaruh yang signifikan terhadap kepuasan pelanggan.


Hasil uji hipotesis disajikan pada tabel 4.18. Pada tabel tersebut dapat diketahui bahwa pengaruh efektivitas *e-toll* terhadap kepuasan pelanggan didapatkan nilai CR sebesar 7.479 dan *t*-tabel sebesar 1.6938 (*t*-hitung > *t*-tabel). Maka, dalam hipotesis ini H₁ diterima yaitu kualitas layanan memiliki pengaruh yang signifikan terhadap kepuasan pelanggan. Pengaruh kualitas layanan terhadap kepuasan pelanggan memiliki koefisien regresi sebesar 0.806 yang berarti keduanya memiliki pengaruh positif dan signifikan. Hasil penelitian ini mendukung penelitian (Windarti [2017]).

Hipotesis Ke - 3


H₀: kepuasan pelanggan tidak memiliki pengaruh yang signifikan terhadap loyalitas pelanggan.

H₁: kepuasan pelanggan memiliki pengaruh yang signifikan terhadap loyalitas pelanggan.

Hasil uji hipotesis disajikan dalam tabel 4.18. Pada tabel tersebut dapat diketahui bahwa pengaruh kepuasan pelanggan terhadap loyalitas pelanggan didapatkan nilai CR sebesar 6.687 dan *t*-tabel sebesar 1.6938 (*t*-hitung > *t*-tabel). Maka, dalam hipotesis ini H₁ diterima yaitu kepuasan pelanggan memiliki pengaruh yang signifikan terhadap loyalitas pelanggan. Pengaruh kepuasan pelanggan terhadap loyalitas pelanggan memiliki koefisien regresi sebesar 0.696. Hal ini berarti keduanya memiliki pengaruh positif dan signifikan. Hasil penelitian ini mendukung penelitian (Zain, 2017).

Sumber: Waluyo, 2009



Sumber: Waluyo Minto, 2009

POST TEST

- Sejauh mana pemahaman Anda mengenai aplikasi dan pengembangan SEM serta outputnya?
- 2. Bila output SEM menghasilkan model yang kurang baik, lakukan inovasi (modifikasi index sebagai rujukan) sehingga model jadi baik!
- 3. Buatlah pengembangan model, dan konstruksi retail di antara distributor dan costumer!

DAFTAR PUSTKA

BAB 4 PEMBAHASAN

Data dalam penelitian ini didapatkan melalui penyebaran kuisioner kepada pengguna *e-toll* secara *online*. Kuisioner disebarkan kepada 230 responden yang melintasi di jalan tol Surabaya—Mojokerto dengan syarat pernah menggunakan *e-toll* minimal satu kali. Jumlah responden tersebut telah mencukupi batas minimal responden dalam teknik *generalized least square* (GLS).

Pengukuran measurement model dapat dilihat pada nilai goodness of fit dan cut off value pada chi-square = 1447.944, probabilitas level = 0.000, Cmin/df = 1.473, RMSEA = 0.045, GFI = 0.725, AGFI = 0.698, CFI = 0.285, dan TLI = 0.247. Dari hasil uji model yang dibandingkan dengan nilai kritisnya ditemukan enam indikator yang belum mencapai hasil maksimal, yaitu *chi-square*, probabilitas, GFI, AGFI, TLI, dan CFI. Semantara itu, uji validitas dan reliabilitas menunjukkan beberapa indikator tidak valid dan tidak reliabel. Oleh sebab itu indikator yang tidak valid dan tidak realiabel dapat dihilangkan agar mendapatkan hasil yang lebih baik. Hasil model modifikasi didapat dari nilai goodness of fit dan cut off value yaitu chi-square = 412.362, probabilitas level = 0.000, Cmin/df = 1.676, RMSEA = 0.054, GFI = 0.850, AGFI = 0.817, CFI = 0.437, dan TLI = 0.498. Dari hasil uji model yang dibandingkan dengan nilai kritis ditemukan empat indikator yang belum mencapai hasil maksimal, yaitu *chi-square*, probabilitas, TLI, dan CFI. Kemudian, uji validitas dan reliabilitas semua indikator menunjukan hasil yang valid dan reliabel.

Semua nilai koefisien korelasi (r) antarvariabel memiliki nilai positif dan mendekati 1. Oleh karena itu, semua pengaruh antarvariabel adalah kuat dan searah (positif). Peningkatan setiap variabel akan diikuti dengan peningkatan variabel lainnya. Pengaruh antara variabel X (kualitas layanan) dengan Y_1 (efektivitas *e-toll*), variabel Y_1 (efektivitas *e-toll*) dengan Y_2 (kepuasan pelanggan), dan Y_3 (loyalitas pelanggan) dengan Y_2 (kepuasan pelanggan) memiliki nilai korelasi tinggi karena nilai r antara 0.60–0.80. Sementara itu, pengaruh antara variabel X (kualitas layanan) dengan Y_2 (kepuasan

pelanggan), variabel X (kualitas layanan) dengan Y_3 (loyalitas pelanggan) memiliki nilai korelasi yang cukup karena nilai r antara 0.40–0.60. Kemudian, variabel Y_1 (efektivitas e-toll) dengan variabel Y_3 (loyalitas pelanggan) memiliki nilai korelasi yang rendah karena nilai r antara 0.20–0.40, tetapi statusnya masih signifikan. Loyalitas pelanggan mempunyai hubungan dan pengaruh yang signifikan serta dapat dipertahankan. Pemerolehan hasil yang signifikan memang cukup sulit, maka proses dijalankan secara simultan, sehingga pengguna e-toll tidak berpaling ke jalan alternatif.

Structural model didapatkan dari nilai goodness of fit dan cut off value yaitu chi-square = 727.535, probabilitas level = 0.000, Cmin/df = 1.578, RMSEA = 0.050, GFI = 0.801, AGFI = 0.773, CFI = 0.396, dan TLI = 0.439. Dari hasil uji model yang dibandingkan dengan nilai kritisnya ditemukan sebanyak lima indikator yang belum mencapai nilai maksimal. Maka, structural model perlu dilakukan modification model menjadi model pengaruh kualitas layanan terhadap efektivitas e-toll, kepuasan pelanggan, loyalitas pelanggan.

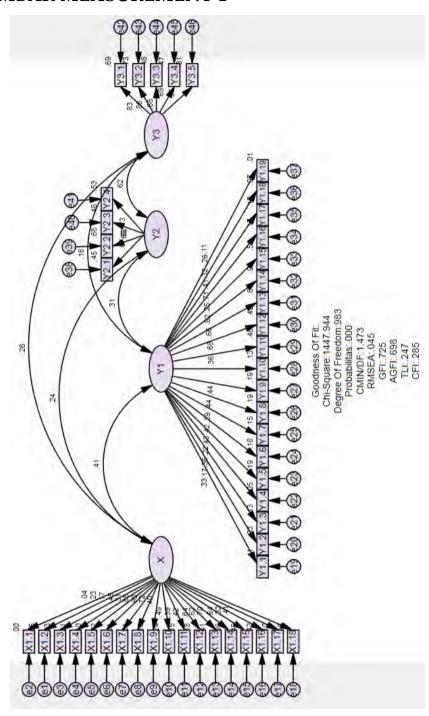
Salah satu alat untuk menilai sebuah model menjadi baik dapat melalui indeks modifikasi (MI). Indeks ini dapat menjadi pedoman untuk memperbaiki model serta akan terjadi pengecilan nilai *chisquare* (X²) menjadi signifikan. Evaluasi model dengan indeks modifikasi dilakukan dengan memilih nilai MI yang terbesa (Waluyo [2016]). Hasil evaluasi model dengan indeks modifikasi (MI) pengukuran *modification model*nya dapat dilihat pada tabel 3.10. *Nilai goodness of fit* dan *cut off value* adalah *chi-square* = 441.008, *probabilitas* level = 0.077, Cmin/df = 1.103, RMSEA = 0.021, GFI = 0.880, AGFI = 0.841, CFI = 0.893, dan TLI = 0.914. Hasil uji model yang dibandingkan dengan nilai kritisnya menyatakan semua indikator baik, kecuali GFI, AGFI, CFI dan TLI. Maksudnya, indikator dapat dikatakan mendekati baik (*marginal*). Begitu juga uji validitas dan reliabilitas semua variabel serta indikator dinyatakan valid dan reliabel.

Hasil uji hipotesis didapatkan dari hasil hipotesis yang memiliki pengaruh signifikan. Hipotesis tersebut yaitu kualitas layanan yang memiliki pengaruh signifikan terhadap efektivitas *e-toll*. Efektivitas *e-toll* memiliki pengaruh yang signifikan terhadap kepuasan pelanggan dan begitu sebaliknya. Semua hipotesis memiliki pengaruh signifikan karena *e-toll* sudah menjadi tuntutan khususnya untuk pengguna mobil pribadi. Loyalitas pelanggan mempunyai hubungan dan pengaruh yang signifikan yang harus dapat dipertahankan untuk menghadapi banyaknya pesaing (bila bisnis dibidang lainnya).

Berdasarkan persamaan Y_1 = 0.775 X + Z2, maka kualitas layanan berpengaruh langsung (memiliki pengaruh signifikan) terhadap efektivitas *e-toll*. Jika persamaan Y_2 = 0.806 X + Z3, maka efektivitas *e-toll* berpengaruh langsung (memiliki pengaruh yang signifikan) terhadap kepuasan pelanggan. Jika persamaan Y_3 = 0.696 X + Z4, maka kepuasan pelayanan berpengaruh langsung (memiliki pengaruh yang signifikan) terhadap loyalitas pelanggan. Selain itu, loyalitas pelanggan berdampak besar terhadap proses simultan, karena susunan proses regresi atau berkelanjutan tidak berpengaruh banyak. *Management* dituntut untuk fokus kepada semua variabel agar hasil akhir memiliki pengaruh yang positif dan signifikan. Kiat-kiat yang dapat dilakukan yaitu dengan menambah indikator dan variabel.

Berdasarkan pengalaman penulis bila variabel eksogen lebih dari satu, maka akan menyebabkan persamaan regresi simultan (tersusun) tidak signifikan. Oleh karena itu, peneliti harus mengusahakan agar variabel eksogennya berjumlah satu, tetapi jika gagal peneliti dapat memodifikasinya untuk mewujudkan aplikasi tindakan di lapangan.

DAFTAR PUSTAKA


- Amalia, Gita Putri. (2017). "Efektivitas Electronic Toll (E-toll) Oleh PT. Jasa Marga Surabaya". dalam Publika, Vol 5, No 2. Surabaya: Universitas Negeri Surabaya.
- Arbuckle, J. L dan Wothke, W. (2015). *Amos 24 User's Guide, Small Waters Corporation*. Chicago: Amos Development Corporation.
- Arka, Arviantama dkk. (2017). "Peningkatan Kualitas Pelayanan, Fasilitas dan Harga untuk Kepuasan Pelanggan agar Tercipta Loyalitas Pelanggan (Studi Pada Pelanggan Gedung Serbaguna DPPPKAD Kabupaten Semarang)". dalam *Journal Of Management*, Vol 3, No 3. Semarang: Universitas Pandanaran.
- Artha, Ketut Gede Widi dan Putu Ery Setiawan. (2016). "Pengaruh Kewajiban Moral, Kualitas Pelayanan, Sanksi Perpajakan Pada Kepatuhan Wajib Pajak Di KPP Badung Utara". dalam E-Jurnal Akuntansi Universitas Udayana, Vol 17, No 2, h. 913—937. Bali: Universitas Udayana.
- Bentler, P. M dan Douglas, G., B. (1980). "Significance Tests And Goodness Of Fit In The Analysis Of Covariance Structures". dalam Psychological Bulletin, Vol 88, No 3, h. 588—606. American: Psychological Association.
- Billingsley, Patrick. (1986). *Probability and Measure*. United States: John Wiley & Sons, Inc.
- Djamarah, Syaiful Bahri dan Aswan Zain. (2013). *Strategi Belajar Mengajar*. Jakarta: Rineka Cipta.
- Ferdinand, A. (2002). Structural Equation Modeling dalam Penelitian Manajemen. Semarang: B. P UNDIP.
- _____. (2004), Structural Equation Modelling dalam Penelitian Manajemen, Semarang: B. P UNDIP.
- Ghozali, Imam. (2013). *Aplikasi Analisis Multivariate dengan Program SPSS*. Semarang: UNDIP.
- Hair. (1995). *Multivariate Data Analysis Pearson.* edisi pertama. Kennesaw State University: Kennesaw.
- ______. (2006). *Multivariate Data Analysis Pearson.* edisi keenam. Kennesaw State University: Kennesaw.. New Jersey.

- Hasan, Iqbal. (1999). *Pokok-Pokok Materi STATISTIKA 2 (Statistik Inferensif)*. Jakarta: Bumi Aksara.
- Hulland J, Chow, Y. H, dan Lam S. (1996). "Use of Causal Models in Marketing Research: A Review". dalam *International Journal of Research in Marketing*, Vol 13, No 2, h. 181—197. April 1996.
- Jasfar, Farida. (2005). *Manajemen Jasa Pendekatan Terpadu*. Bogor: Ghalia Indonesia
- Masri, Singarimbun dan Sofyan Effendi, (1995). *Metode Penelitian Survei Edisi Revisi*. Jakarta: PT. Pustaka LP3ES.
- McDonald, M. P, N. W. Galwey dan T. D. Colmer. (2002). "Similarity and Diversity in Adventitious Root Anatomy as Related to Root Aeration Among a Range of Wet– and Dry–Land Grass Species". Plant, Cell, and Environment, Vol 25, No 3, h. 441—451. Australia: *University Of Western Australia*.
- Michael, H. Walizer dan Paul L Wienir. (1987). *Metode dan Analisis Penelitian: Mencari Hubungan Jilid* 2. Jakarta: Erlangga.
- Nunally J. C dan Bernstein, IH. (1994). *Psysikometric Theory (3 rd.ed)*. New York: Mc, Graw-Hill.
- Panjaitan, Januar Efendi. (2016). "Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan Pada Jne Cabang Bandung". dalam DeReMa Jurnal Manajemen, Vol. 11 No. 2. Panjaitan: Universitas Telkom.
- Pemerintah Indonesia. 2004. *Undang-Undang Republik Indonesia Nomor 38 Tahun 2004 tentang Jalan*. Lembaran Negara Republik Indonesia No. 132. Jakarta: Sekretariat Negara.
- PT Jasa Marga. (tanpa tahun). *Sekilas Jasa Marga*. dilihat 10 Oktober 2018. http://www.jasamarga.com/public/id/infoperusahaan/ProfilPerusahaan/Overview.aspx.
- Rahmayanty, Nina. (2010). *Manajemen Pelayanan Prima*. Yogyakarta: Graha Ilmu.
- Segara, Tirta. 2014. "Bank Indonesia Mencanangkan Gerakan Nasional Non Tunai". dilihat 10 Oktober 2018. https://www.bi.go.id/id/ruang-media/siaran-pers/Pages/sp_165814.aspx.
- Sugiarto, Sitinjak. (2006). *Lisrel Edisi Pertama Cetakan Pertama*. Yogyakarta: Penerbit Graha Ilmu.
- Sugiyono. (2016). *Metode Penelitian Kuantitatif, Kualitatif dan R&D.* Bandung: PT Alfabet.

- Supranto J. (2011). Pengukuran Tingkat Kepuasan Pelanggan untuk Menaikkan Pangsa Pasar. Jakarta: Rineka Cipta.
- Suryabrata, Sumadi. (2004). *Metodologi Penelitian*. Yogyakarta: Pustaka Pelajar.
- Tabachnick, B. G dan L. S. Fidell. (1996). *Using Multivariate Statistics*. New York: Harpoer Collings College Publishers.
- Tanaka, J. S dan G. J. Huba. (1989). "A general coefficient of determination for covariance structure models under arbitrary GLS estimation". dalam *British Journal of Mathematical and Statistical Psychology*, Vol. 42, No 42, h. 233—239. November 1989.
- Tjiptono, Fandy. (2004). *Strategi Pemasaran*. Yogyakarta: Penerbit Andi.
- _____. (2011). Pemasaran Jasa, Malang: Banyumedia Publishing.
- Waluyo, Minto. (2009). Panduan dan Aplikasi SEM untuk aplikasi model dalam penelitian teknik Industri & Manajemen. Jakarta: Penerbit Indek.
- _____. (2016). Mudah Cepat Tepat Pemakaian Tol Amos dalam Aplikasi SEM. Surabaya: UPN "Veteran".
- Windarti, Tias & Ibrahim Mariaty. (2017). "Pengaruh Kualitas Produk dan Kualitas Pelayanan Terhadap Kepuasan Konsumen Produk Donat Madu (Studi Pada Konsumen Cv. Donat Madu Cihanjuang—Pekanbaru)". dalam Jurnal Online Mahasiswa FISIP, Vol. 4 No. 2. Riau: Universitas Riau.
- Zulganef. (2006). Pemodelan Persamaan Struktural & Aplikasinya Menggunakan Amos 5. Bandung: Pustaka

LAMPIRAN

GAMBAR MEASUREMENT 1

OUTPUT MEASUREMENT MODEL

Analysis Summary Date and Time Date: Monday, December 24, 2018

Time: 10:26:22 PM

Title

mea: Monday, December 24, 2018 10:26 PM

Notes for Group (Group number 1) The model is recursive. Sample size = 230

Variable Summary (Group number 1)

Your model contains the following variables (Group number 1)

Observed, endogenous variables

X1.2 X1.1 X1.3 X1.4 X1.5 X1.6 X1.7 X1.8 X1.9 X1.10 X1.11 X1.12 X1.13 X1.14 X1.15 X1.16 Y1.2 Y1.1 Y1.3 Y1.4 Y1.5 Y1.6 Y1.7 Y1.8 Y1.9 Y1.10 Y1.11 Y1.12 Y1.13 Y1.14 Y1.15 Y1.16 Y1.17 Y1.18 Y1.19 Y2.1 Y2.2 Y2.3 Y2.4 Y3.1 Y3.2 Y3.3 Y3.4 Y3.5 X1.17 X1.18

Unobserved, exogenous variables

e1 e2 e3 e4 e5 e6 e7 X

e8 e9 e10 e11 e12 e13 e14 e15 e16 e20 e19 e21 e22 Y1

e23 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37 e38 e39 e40 e41 Y3 e42 e43 e44 e45 e46 e17 e18 Y2

Variable counts (Group number 1)

Number of variables in your model:96Number of observed variables:46Number of unobserved variables:50Number of exogenous variables:50Number of endogenous variables:46

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments : 1081 Number of distinct parameters to be estimated : 98 Degrees of freedom (1081 - 98) : 983

Result (Default model) Minimum was achieved Chi-square = 1447.944

Degrees of freedom = 983 Probability level = .000

Estimates (Group number 1 - Default model)

Scalar Estimates (Group number 1 - Default model)

Generalized Least Squares Estimates

Regression Weights: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
X1.8 < X	1.718	.663	2.592	.010	par_1
X1.9 < X	1.135	.557	2.036	.042	par_2
X1.10 < X	1.409	.501	2.813	.005	par_3
X1.11 < X	1.006	.496	2.027	.043	par_4
Y1.5 < Y1	1.344	1.173	1.146	.252	par_5
Y1.6 < Y1	1.360	.868	1.568	.117	par_6
Y1.7 < Y1	1.045	.679	1.540	.124	par_7
Y1.8 < Y1	1.340	.733	1.827	.068	par_8
Y1.9 < Y1	1.171	.805	1.454	.146	par_9
Y1.10 < Y1	1.352	.893	1.514	.130	par_10
Y1.11 < Y1	2.107	1.109	1.900	.057	par_11
Y1.12 < Y1	2.288	1.077	2.124	.034	par_12
Y1.13 < Y1	2.540	1.176	2.160	.031	par_13
Y1.14 < Y1	.581	.545	1.067	.286	par_14
Y1.15 < Y1	1.613	.698	2.312	.021	par_15
Y3.1 < Y3	1.000				
Y3.2 < Y3	.977	.093	10.479	***	par_16
Y3.3 < Y3	.745	.140	5.319	***	par_17
Y3.4 < Y3	.582	.138	4.203	***	par_18
Y3.5 < Y3	.536	.098	5.449	***	par_19
X1.18 < X	1.000	=0.4	4 =00	400	0.6
X1.17 < X	.763	.501	1.522	.128	par_26
X1.16 < X	1.586	.697	2.275	.023	par_27
X1.15 < X	1.594	.827	1.928	.054	par_28
X1.14 < X	1.503	.784	1.916	.055	par_29
X1.13 < X X1.12 < X	1.502 1.277	.856 .770	1.754	.079	par_30
X1.12 < X X1.1 < X	.089	.288	.308	.097 .758	par_31 par_32
X1.1 < X X1.2 < X	.552	.200 .526	1.050	.756	par_32
X1.2 < X X1.3 < X	.435	.548	.793	.428	par_33
X1.4 < X	1.163	.531	2.192	.028	par_3 1
X1.5 < X	.857	.462	1.855	.064	par_36
X1.6 < X	2.529	1.119	2.260	.024	par_30
X1.7 < X	3.072	1.362	2.255	.024	par_38
Y1.1 < Y1	1.215	1.316	.923	.356	par_39
Y1.2 < Y1	.441	.975	.453	.651	par_40
Y1.3 < Y1	1.344	1.424	.944	.345	par_41
Y1.4 < Y1	.656	.856	.766	.444	par_42
Y1.19 < Y1	258	.549	470	.638	par_43
Y1.18 < Y1	507	.711	713	.476	par_44
Y1.17 < Y1	.883	.373	2.371	.018	par_45
Y1.16 < Y1	1.000				•
Y2.2 < Y2	1.000				
Y2.3 < Y2	.712	.116	6.128	***	par_46
Y2.1 < Y2	.776	.127	6.106	***	par_47
Y2.4 < Y2	.835	.152	5.498	***	par_48

Standardized Regression Weights: (Group number 1 - Default model)

Standardized Regression Weights. (Group humber 1 - Derault moder)							
		Estimate		X1.15	< X	.700	
X1.8	< X	.715		X1.14	< X	.621	
X1.9	< X	.397		X1.13	< X	.641	
X1.10	< X	.489		X1.12	< X	.419	
X1.11	< X	.394		X1.1	< X	.043	
Y1.5	< Y1	.434		X1.2	< X	.232	
Y1.6	< Y1	.420		X1.3	< X	.166	
Y1.7	< Y1	.389		X1.4	< X	.454	
Y1.8	< Y1	.441		X1.5	< X	.312	
Y1.9	< Y1	.438		X1.6	< X	.848	
Y1.10	< Y1	.359		X1.7	< X	.897	
Y1.11	< Y1	.676		Y1.1	< Y1	.325	
Y1.12	< Y1	.656		Y1.2	< Y1	.168	
Y1.13	< Y1	.820		Y1.3	< Y1	.357	
Y1.14	< Y1	.248		Y1.4	< Y1	.219	
Y1.15	< Y1	.712		Y1.19	< Y1	113	
Y3.1	< Y3	.828		Y1.18	< Y1	261	
Y3.2	< Y3	.855		Y1.17	< Y1	.316	
Y3.3	< Y3	.680		Y1.16	< Y1	.408	
Y3.4	< Y3	.687		Y2.2	< Y2	.823	
Y3.5	< Y3	.552		Y2.3	< Y2	.691	
X1.18	< X	.405		Y2.1	< Y2	.668	
X1.17	< X	.322		Y2.4	< Y2	.727	
X1.16	< X	.644					

Covariances: (Group number 1 - Default model)

	- (I .				
			Estimate	S.E.	C.R.	PLabel
X	<>	Y1	.017	.014	1.221	.222par_20
X	<>	Y2	.023	.022	1.027	.304par_21
X	<>	Y3	.030	.024	1.234	.217par_22

Correlations: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	PLabel
Y1 <> Y2	.027	.022	1.240	.215par_23
Y1 <> Y3	.017	.020	.867	.386par_24
Y3 <> Y2	.148	.032	4.617	***par_25

			Estimate
X	<>	Y1	.411
X	<>	Y2	.238
X	<>	Y3	.257
Y1	<>	Y2	.309
Y1	<>	Y3	.164
Y3	<>	Y2	.616

Variances: (Group number 1 - Default model)

nces. (di oup	number 1 - D			
	Estimate	S.E.	C.R.	PLabel
X	.048	.040	1.179	.238par_49
Y1	.038	.039	.966	.334par_50
Y3	.291	.054	5.351	***par_51
Y2	.197	.041	4.784	***par_52
e1	.255	.036	7.169	***par_53
e2	.202	.027	7.447	***par_54
e3	.316	.039	8.122	***par_55
e4	.248	.033	7.538	***par_56
e5	.324	.041	7.946	***par_57
e6	.119	.025	4.861	***par_58
e7	.109	.033	3.324	***par_59
e8	.134	.018	7.552	***par_60
e9	.328	.045	7.277	***par_61
e10	.300	.038	7.834	***par_62
e11	.263	.035	7.571	***par_63
e12	.365	.049	7.460	***par_64
e13	.154	.023	6.827	***par_65
e14	.171	.022	7.785	***par_66
e15	.126	.018	6.957	***par_67
e16	.169	.025	6.839	***par_68
e20	.256	.034	7.461	***par_69
e19	.476	.062	7.737	***par_70
e21	.472	.065	7.230	***par_71

	Estimate	S.E.	C.R.	PLabel
e22	.325	.044	7.437	***par_72
e23	.297	.040	7.411	***par_73
e24	.329	.043	7.629	***par_74
e25	.234	.028	8.244	***par_75
e26	.283	.039	7.331	***par_76
e27	.220	.034	6.427	***par_77
e28	.472	.063	7.476	***par_78
e29	.201	.029	7.061	***par_79
e30	.264	.036	7.255	***par_80
e31	.120	.026	4.615	***par_81
e32	.195	.025	7.851	***par_82
e33	.096	.017	5.704	***par_83
e34	.191	.027	6.992	***par_84
e35	.268	.037	7.308	***par_85
e36	.133	.030	4.518	***par_86
e37	.196	.030	6.486	***par_87
e38	.147	.021	7.148	***par_88

e39	.094	.022	4.261	***par_89
e40	.109	.017	6.504	***par_90
e41	.122	.021	5.917	***par_91
e42	.134	.024	5.667	***par_92
e43	.102	.021	4.887	***par_93
e44	.188	.027	7.016	***par_94
e45	.110	.019	5.707	***par_95
e46	.190	.031	6.203	***par_96
e17	.240	.034	7.021	***par_97
e18	.243	.032	7.473	***par_98

Squared Multiple Correlations: (Group number 1 - Default model)

	Estimate
X1.18	.164
X1.17	.104
Y3.5	.305
Y3.4	.473
Y3.3	.462
Y3.2	.731
Y3.1	.685
Y2.4	.529
Y2.3	.477
Y2.2	.678
Y2.1	.446
Y1.19	.013
Y1.18	.068
Y1.17	.100
Y1.16	.166
Y1.15	.507
Y1.14	.062
Y1.13	.672
Y1.12	.430
Y1.11	.457
Y1.10	.129
Y1.9	.192
Y1.8	.195
Y1.7	.151
Y1.6	.177
Y1.5	.188
Y1.4	.048
Y1.3	.127
Y1.1	.106
Y1.2	.028
X1.16	.415
X1.15	.490
X1.14	.385
X1.13	.410
X1.12	.175
X1.11	.155

X1.10	.239
X1.9	.157
X1.8	.512
X1.7	.805
X1.6	.718
X1.5	.097
X1.4	.206
X1.3	.028
X1.1	.002
X1.2	.054

 $\begin{tabular}{ll} Modification Indices (Group number 1 - Default model) Covariances: (Group number 1 - Default model) \\ \end{tabular}$

		M.I. 'ar	Change
e17 <>	e18	7.210	.061
e45 <>	e46	5.143	037
e44 <>	e18	4.970	.046
e41 <>	e18	4.360	037
e41 <>	e17	7.642	.049
e41 <>	e43	5.446	029
e39 <>	Y3	4.173	031
e39 <>	e46	5.360	036
e39 <>	e45	5.163	028
e38 <>	e46	5.407	.039
e38 <>	e45	4.289	.028
e38 <>	e41	6.081	034
e37 <>	Y3	5.907	048
e37 <>	e44	4.971	043
e36 <>	Y2	4.672	034

e36 <>	e18	5.107	045
e36 <>	e17	11.132	.066
e36 <>	e46	7.239	051
e36 <>	e45	4.493	032
e36 <>	e44	5.825	.043
e35 <>	e45	4.727	039
e35 <>	e44	4.984	.048
e35 <>	e38	5.258	.043
e34 <>	e45	9.088	.047
e34 <>	e44	4.710	040
e34 <>	e35	4.395	.044
e33 <>	e46	11.749	.052
e33 <>	e42	5.109	028
e32 <>	e40	5.833	034
		1	

e32<>	e37	5.200	.041
e32<>	e33	5.098	.030
e31<>	e46	4.300	037
e31<>	e45	9.482	043
e31<>	e44	5.690	.039
e31<>	e39	4.650	029
e31<>	e38	6.225	.036
e31<>	e35	8.771	059
e30<>	e43	4.475	.036
e30<>	e37	5.702	.053
e28<>	Y2	12.515	086
e28<>	Y3	7.598	.080
e28<>	e45	4.639	.051
e28<>	e41	6.477	061
e28<>	e37	4.512	.063
e28<>	e35	6.249	.083
e27<>	e18	4.014	046
e27<>	e46	8.114	.063

e27<>	e38	5.070	041
e26<>	e18	10.587	.079
e26<>	e44	12.063	076
e26<>	e37	6.384	059
e26<>	e35	4.698	.056
e25<>	e27	4.311	.045
e24<>	e44	4.522	.050
e24<>	e41	6.275	050
e24<>	e29	4.677	052
e24<>	e25	5.036	.053
e23<>	e27	5.217	058
e22<>	Y3	5.585	.056
e22<>	e18	6.007	065
e22<>	e44	8.763	.070
e22<>	e26	7.482	.078
e21<>	e44	8.334	082
e21<>	e37	7.490	080

e21 <>e26	8.082	097
e21 <>e22	4.684	.079
e19 <>e17	5.643	075
e19 <> e44	6.177	069
e19 <>e36	10.060	.086
e19 <>e26	5.139	076
e19 <>e21	4.744	095
e20 <>e19	7.374	.083
e16 <> e46	14.291	071
e16 <> e36	9.365	052
e16 <>e33	10.364	.044
e16 <> e32	4.101	035
e15 <>e33	6.437	030
e15 <>e32	4.795	.032
e14 <>e22	4.600	.046
e13 <>e40	6.193	033
e13 <>e37	4.283	.037
e12 <>e40	5.602	.046

e12 <>e35	7.210	079
e12 <>e31	5.370	053
e12 <>e15	7.271	055
e12 <>e13	7.878	.061
e11 <>e45	8.290	.051
e11 <>e44	7.848	059
e11 <>e34	10.709	070
e11 <>e31	4.678	.041
e11 <>e22	8.401	.079
e11 <>e14	7.920	054
e10 <>e41	4.826	.042
e10 <>e34	6.626	.058
e10 <>e24	4.169	.057
e10 <>e11	5.608	.059
e9 <>Y3	4.422	.052
e9 <>e18	8.696	078
e9 <>e17	6.386	.068

e9 <>	e44	6.278	.060
e9 <>	e38	4.784	046
e9 <>	e37	4.418	.053
e9 <>	e36	6.315	059
e9 <>	e28	5.159	084
e9 <>	e22	8.108	088
e9 <>	e21	4.349	.078
e9 <>	e19	5.321	.084
e8 <>	e17	7.338	046
e8 <>	e46	4.675	.035
e8 <>	e36	10.022	.045
e8 <>	e16	4.110	.029
e8 <>	e13	4.080	.028
e7 <>	e30	4.346	.040
e7 <>	e27	5.571	.044
e7 <>	e20	6.260	047
e6 <>	e30	8.524	054
e6 <>	e27	5.419	042

e6 <>	e20	7.483	.050
e5 <>	e28	8.121	.096
e4 <>	e46	4.709	048
e4 <>	e34	6.898	054
e4 <>	e33	10.961	.052
e4 <>	e29	5.376	048
e4 <>	e16	7.835	055
e4 <>	e15	5.428	.039
e4 <>	e11	5.162	054
e4 <>	e10	5.007	.055
e4 <>	e5	4.386	.053
e3 <>	e10	4.380	056
e2 <>	e44	6.362	046
e2 <>	e41	5.488	.036
e2 <>	e26	4.008	045
e2 <>	e19	4.929	062
e1 <>	e7	8.220	054
e1 <>	e7	8.220	054

		M.I.	Par Change
e1 <>	е6	8.068	.053
e1 <>	e3	4.574	.053

Variances: (Group number 1 - Default model)
M.I. Par Change

Model Fit Summary CMIN

-:	110 diffinition of the control of th						
	Model	NPAR	CMIN	DF	P	CMIN/DF	
	Default model	98	1447.944	983	.000	1.473	
	Saturated model	1081	.000	0			
	Independence model	46	1684.951	1035	.000	1.628	
	Zero model	0	5267.000	1081	.000	4.872	

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.291	.725	.698	.659
Saturated model	.000	1.000		
Independence model	.334	.680	.666	.651
Zero model	.356	.000	.000	.000

Baseline Comparisons

ī						
	Model	NFI	RFI	IFI	TLI	CFI
		Delta1	rho1	Delta2	rho2	
	Default model	.141	.095	.33	38.247	.285
	Saturated model	1.000)	1.00	00	1.000
	Independence model	.000	.000	.00	00.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.950	.134	.270
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	464.944	367.164	570.697
Saturated model	.000	.000	.000
Independence model	649.951	541.461	766.326

FMIN_

Model	FMIN	F0	LO 90	HI 90
Default model	6.323	2.030	1.603	2.492
Saturated model	.000	.000	.000	.000

Model	FMIN	F0	LO 90	HI 90	
Independence model	7.358	2.838	2.364	3.346	

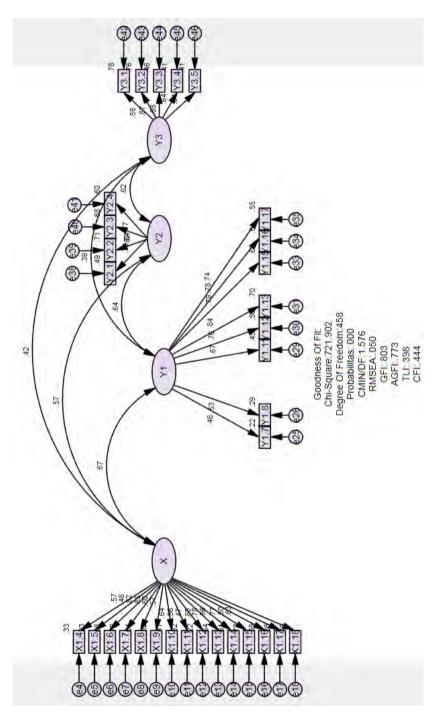
RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.045	.040	.050	.936
Independence model	.052	.048	.057	.194

AIC

Model	AIC	BCC	BIC	CAIC
Default model	1643.944	1694.559	1980.875	2078.875
Saturated model	2162.000	2720.319	5878.564	6959.564
Independence model	1776.951	1800.709	1935.102	1981.102
Zero model	5267.000	5267.000	5267.000	5267.000

ECVI


Model	ECVI	LO 90	HI 90	MECVI
Default model	7.179	6.752	7.641	7.400
Saturated model	9.441	9.441	9.441	11.879
Independence model	7.760	7.286	8.268	7.863
Zero model	23.000	22.027	24.002	23.000

HOELTER

Model	HOELTER .05	HOELTER .01
Default model	168	173
Independence model	151	156
Zero model	51	52

Minimization: .113
Miscellaneous: 1.341
Bootstrap: .000
Total: 1.454

GAMBAR MEASUREMENT 2

OUTPUT MEASUREMENT MODEL AKHIR

Analysis Summary Date and Time Date: Monday, December 24, 2018

Time: 11:32:32 PM

Title

Mea Akhir: Monday, December 24, 2018 11:32 PM

Notes for Group (Group number 1) The model is recursive. Sample size = 230 Variable Summary (Group number 1)

Your model contains the following variables (Group number 1)

Observed, endogenous variables X1.4

X1.5 X1.6 X1.7 X1.8 X1.9 X1.10 X1.11 X1.12 X1.13 X1.14 X1.15 X1.16 Y1.7 Y1.8 Y1.11 Y1.12 Y1.13 Y1.15 Y1.16 Y1.17 Y2.1 Y2.2 Y2.3 Y2.4 Y3.1 Y3.2

Y3.3 Y3.4 Y3.5 X1.17 X1.18

Unobserved, exogenous variables

e4 e5 e6 e7 X e8 e9 e10 e11 e12 e13 e14 e15 e16 Y1 e25 e26 e29 e30 e31 e33 e34 e35 e38 e39 e40 e41 Y3

e42 e43 e44 e45 e46 e17

e18 Y2

Variable counts (Group number 1)

Number of variables in your model : 68
Number of observed variables : 32
Number of unobserved variables : 36
Number of exogenous variables : 36
Number of endogenous variables : 32

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments : 528 Number of distinct parameters to be estimated : 70 Degrees of freedom (528 - 70) : 458

Result (Default model) Minimum was achieved Chi-square = 721.902

Degrees of freedom = 458 Probability level = .000 Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Generalized Least Squares Estimates

Regression Weights: (Group number 1 - Default model)

		Estimate	S.E.	C.R.	P	Label
X1.8	< X	1.219	.253	4.815	***	par_1
X1.9	< X	1.023	.259	3.952	***	par_2
X1.10	< X	1.169	.229	5.102	***	par_3
X1.11 Y1.7	< X < Y1	.896 .461	.212 .132	4.223 3.486	***	par_4
Y1.8	< Y1	.685	.152	4.306	***	par_5 par_6
Y1.11	< Y1	.766	.166	4.623	***	par_5
Y1.12	< Y1	1.107	.167	6.615	***	par_8
Y1.13	< Y1	1.032	.197	5.239	***	par_9
Y1.15	< Y1	.786	.125	6.314	***	par_10
Y3.1	< Y3	1.000				
Y3.2	< Y3	.912	.082	11.171	***	par_11
Y3.3	< Y3	.664	.124	5.364	***	par_12
Y3.4	< Y3	.427	.150	2.844	.004	par_13
Y3.5	< Y3	.641	.090	7.118	***	par_14
X1.18	< X	1.000				
X1.17	< X	.977	.202	4.828	***	par_21
X1.16	< X	1.300	.301	4.322	***	par_22
X1.15	< X	1.357	.377	3.594	***	par_23
X1.14	< X	1.292	.357	3.618	***	par_24
X1.13	< X	1.265	.398	3.177	.001	par_25
X1.12	< X	.798	.304	2.623	.009	par_26
X1.4	< X	.883	.201	4.394	***	par_27
X1.5	< X	.862	.243	3.547	***	par_28
X1.6	< X	1.401	.364	3.855	***	par_29
X1.7	< X	1.543	.381	4.053	***	par_30
Y1.17	< Y1	.969	.120	8.095	***	par_31
Y1.16	< Y1	1.000				
Y2.2	< Y2	1.000				
Y2.3	< Y2	.925	.120	7.714	***	par_32
Y2.1	< Y2	.747	.102	7.333	***	par_33
Y2.4	< Y2	.932	.136	6.872	***	par_34

Standardized Regression Weights: (Group number 1 - Default model)

		Estimate

X1.8	< X	.798
X1.9	< X	.568
X1.10	< X	.639
X1.11	< X	.564
Y1.7	< Y1	.464
Y1.8	< Y1	.535
Y1.11	< Y1	.674
Y1.12	< Y1	.763
Y1.13	< Y1	.838
Y1.15	< Y1	.789
Y3.1	< Y3	.885
Y3.2	< Y3	.875
Y3.3	< Y3	.681
Y3.4	< Y3	.641
Y3.5	< Y3	.639
X1.18	< X	.630

X1.17	< X	.602
X1.16	< X	.771
X1.15	< X	.857
X1.14	< X	.781
X1.13	< X	.802
X1.12	< X	.470
X1.4	< X	.574
X1.5	< X	.483
X1.6	< X	.824
X1.7	< X	.850
Y1.17	< Y1	.738
Y1.16	< Y1	.782
Y2.2	< Y2	.841
Y2.3	< Y2	.822
Y2.1	< Y2	.701
Y2.4	< Y2	.773
I		

Covariances: (Group number 1 - Default model)

Idiicc	lances. (droup number 1 Delautemodel)							
		Estimate	S.E.	C.R.	PLabel			
X	<>	Y1	.174	.091	1.905	.057par_15		
X	<>	Y2	.133	.078	1.707	.088par_16		
X	<>	Y3	.125	.078	1.606	.108par_17		
Y1	<>	Y2	.210	.092	2.273	.023par_18		
Y1	<>	Y3	.160	.095	1.685	.092par_19		
Y3	<>	Y2	.230	.088	2.624	.009par_20		

Correlations: (Group number 1 - Default model)

			Estimate
X	<>	Y1	.668
X	<>	Y2	.566
X	<>	Y3	.424
Y1	<>	Y2	.641
Y1	<>	Y3	.390
Y3	<>	Y2	.622

Variances: (Group number 1 - Default model)

aı	inces. (Group number 1 - Deraut moder)							
		Estimate	S.E.	C.R.	PLabel			
	X	.188	.095	1.983	.047par_35			
	Y1	.363	.131	2.767	.006par_36			
	Y3	.464	.083	5.559	***par_37			
	Y2	.295	.091	3.248	.001par_38			

	Estimate	S.E.	C.R.	PLabel
e4	.298	.037	8.066	***par_39
e5	.459	.052	8.772	***par_40
e6	.175	.026	6.654	***par_41
e7	.171	.027	6.421	***par_42
e8	.160	.020	7.920	***par_43
e9	.413	.050	8.202	***par_44
e10	.372	.043	8.575	***par_45
e11	.323	.038	8.489	***par_46
e12	.423	.053	7.915	***par_47
e13	.167	.025	6.781	***par_48
e14	.201	.024	8.297	***par_49
e15	.125	.019	6.619	***par_50
e16	.217	.028	7.860	***par_51
e25	.281	.033	8.464	***par_52
e26	.426	.047	9.063	***par_53
e29	.256	.032	7.924	***par_54
e30	.319	.041	7.723	***par_55
e31	.164	.028	5.909	***par_56
e33	.136	.020	6.689	***par_57
e34	.230	.033	7.063	***par_58
e35	.284	.041	6.858	***par_59
e38	.170	.022	7.747	***par_60
e39	.122	.021	5.710	***par_61
e40	.121	.020	6.200	***par_62
e41	.173	.025	7.013	***par_63
e42	.129	.028	4.589	***par_64
e43	.119	.024	5.011	***par_65
e44	.236	.029	8.157	***par_66
e45	.121	.022	5.433	***par_67
e46	.276	.038	7.342	***par_68
e17	.315	.038	8.238	***par_69
e18	.286	.036	7.964	***par_70

 $\label{lem:model} \mbox{Modification Indices (Group number 1 - Default model) Covariances: (Group number 1 - Default model)}$

Default model)	M.I.	Par Change
e17 <> e18	6.483	.064
e45 <> e46	9.172	059
e41 <> e43	5.317	033
e40 <> e43	4.777	.029
e40 <> e42	5.040	032
e39 <> Y3	4.265	038
e39 <> e46	8.649	053
e38 <> e46	9.018	.058
e38 <> e45	4.038	.030
e38 <> e39	4.303	.028
e35 <> e40	4.685	.041
e34 <> e45	4.383	.038
e33 <> Y2	4.002	027
e33 <> e46	8.582	.055
e33 <> e42	8.045	041
e31 <> e46	6.689	055
e31 <> e45	6.840	043
e31 <> e44	4.246	.038
e31 <> e38	5.114	.037
e31 <> e35	9.013	067
e30 <> e43	4.278	.039
e30 <> e33	4.010	039
e29 <> e43	5.484	040
e29 <> e42	4.405	.039
e29 <> e40	5.154	.039
e29 <> e34	5.207	051
e26 <> e35	5.900	.073
e26 <> e34	4.516	057
1	ı	!

e16 <>	e46	6.583	057
e16 <>	e33	5.264	.037
e15 <>	e33	4.015	026
e13 <>	e40	8.722	043
e12 <>	e40	9.329	.067
e12 <>	e35	4.564	069
		M.I.	Par Change
e12 <>	e30	4.243	.066
e12 <>	e15	5.293	050
e12 <>	e13	12.592	.083
e11 <>	e44	4.502	049
e11 <>	e42	5.007	.045
e10 <>	e42	6.528	055
e10 <>	e41	4.134	.045
e10 <>	e33	7.098	054
e10 <>	e16	4.766	.052
e9 <>	e18	6.818	077
e9 <>	e39	4.341	.044
e8 <>	e13	6.400	.038
e8 <>	e12	6.379	057
e6 <>	e30	4.252	045
e6 <>	e7	4.699	.033
e4 <>	e34	10.20	076
e4 <>	e33	0 7.794	.052
e4 <>	e15	5.523	.042
e4 <>	e11	4.801	058
e4 <>	e5	4.097	.061

Variances: (Group number 1 - Default model) Regression Weights: (Group number 1 - Default model)

	louery		M.I.	Par Change
X1.18	<	X1.17	4.042	.127
X1.18	<	X1.9	4.397	121
Y3.5	<	Y3.4	4.914	261
Y3.5	<	Y2.1	7.155	.215
Y3.5	<	X1.9	4.213	.119
Y3.4	<	Y3.5	4.919	115
Y3.4	<	Y2.4	4.681	.107
Y3.4	<	Y2.1	5.796	.143
Y3.1	<	Y2.3	4.008	119
Y2.4	<	Y3.4	4.438	.195
Y2.4	<	X1.12	5.719	121
Y2.3	<	Y1.17	5.359	.095
Y2.3	<	Y1.11	6.284	.118
Y2.3	<	X1.12	8.855	.136
Y2.2	<	Y3.5	8.960	140
Y2.2	<	Y3.4	4.301	174
Y2.1	<	Y3.5	7.856	.143
Y2.1	<	Y3.4	4.896	.200
Y1.17	<	Y1.8	4.143	.120
Y1.16	<	Y3.4	4.983	.246
Y1.16	<	X1.4	7.712	175
Y1.15	<	Y2.1	4.968	132
Y1.15	<	X1.4	5.161	.112
Y1.13	<	Y3.5	5.034	124
Y1.13	<	Y3.4	5.541	231
X1.15	<	X1.12	4.074	091
X1.13	<	Y2.3	7.608	171
X1.13	<	Y2.1	4.935	145
X1.13	<	X1.12	10.302	.161
X1.12	<	Y2.3	5.180	.212
X1.10	<	Y1.15	4.810	180
			M.I.	Par Change
X1.9	<	Y3.5	4.202	.160
X1.8	<	X1.12	4.932	105
X1.5	<	Y1.16	4.525	.146
X1.5	<	Y1.11	4.472	.166

Model Fit Summary CMIN

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	70	721.902	458	.000	1.576
Saturated model	528	.000	0		
Independence model	32	970.952	496	.000	1.958
Zero model	0	3664.000	528	.000	6.939

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.196	.803	.773	.697
Saturated model	.000	1.000		
Independence model	.369	.735	.718	.690
Zero model	.398	.000	.000	.000

Baseline Comparisons

ille Collipai isolis					
Model	NFI R	.FI	IFI	TLI	CFI
	Delta1 r	ho1	Delta2	rho2	
Default model	.257	.195	.486	.398	<u>.444</u>
Saturated model	1.000		1	.000	1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI	
Default model	.923	.237	.410	
Saturated model	.000	.000	.000	
Independence model	1.000	.000	.000	

NCP

Model	NCP	LO 90	HI 90
Default model	263.902	194.800	340.933
Saturated model	.000	.000	.000
Independence model	474.952	390.359	567.328

FMIN

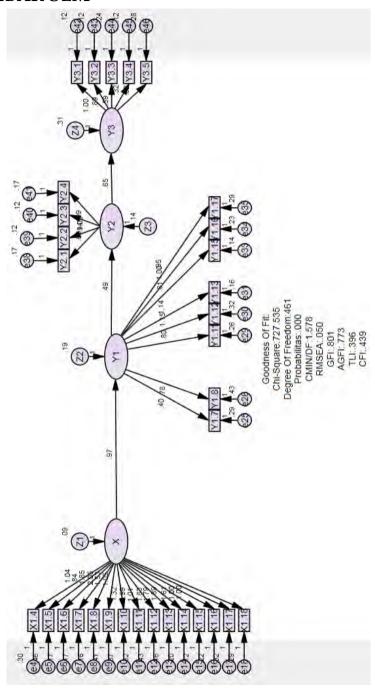
Model	FMIN	F0	LO 90	HI 90
Default model	3.152	1.152	.851	1.489
Saturated model	.000	.000	.000	.000
Independence model	4.240	2.074	1.705	2.477

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.050	.043	.057	.477
Independence model	.065	.059	.071	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	861.902	885.473	1102.567	1172.567
Saturated model	1056.000	1233.796	2871.306	3399.306
Independence model	1034.952	1045.728	1144.971	1176.971
Zero model	3664.000	3664.000	3664.000	3664.000


ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	3.764	3.462	4.100	3.867
Saturated model	4.611	4.611	4.611	5.388
Independence model	4.519	4.150	4.923	4.566
Zero model	16.000	15.178	16.854	16.000

HOELTER

Model	HOELTER .05	HOELTER .01
Default model	162	169
Independence model	130	135
Zero model	37	

GAMBAR SEM

OUTPUT STRUCTURAL MODEL

Analysis Summary Date and Time Date: Monday, December 24, 2018

Time: 11:13:36 AM

Title

Struk 7: Monday, December 24, 2018 11:13 AM

Notes for Group (Group number 1)

The model is recursive. Sample size = 230

Variable Summary (Group number 1)

Your model contains the following variables (Group number 1)

Observed, endogenous variables

X1.4 X1.5 X1.6 X1.7 X1.8 X1.9 X1.10 X1.11 X1.12 X1.13 X1.14 X1.15 X1.16 Y1.7 Y1.8 Y1.11 Y1.12 Y1.13 Y1.15 Y1.16 Y1.17 Y2.1 Y2.2 Y2.3 Y2.4 Y3.1 Y3.2 Y3.3 Y3.4 Y3.5 X1.17 X1.18

Unobserved, endogenous variables X Y1 Y3 Y2

Unobserved, exogenous variables

e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e25 e26 e29 e30 e31 e33 e34 e35 e38 e39 e40 e41 e42 e43 e44 e45 e46 e17 e18 7.1 7.2 7.3 7.4

Variable counts (Group number 1)

Number of variables in your model : 72
Number of observed variables : 32
Number of unobserved variables : 40
Number of exogenous variables : 36
Number of endogenous variables : 36

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments : 528 Number of distinct parameters to be estimated : 67 Degrees of freedom (528 - 67) : 461

Result (Default model) Minimum was achieved Chi-square = 727.535

Degrees of freedom = 461 Probability level = .000 Estimates (Group number 1 - Default model) Scalar Estimates (Group number 1 - Default model) Generalized Least Squares Estimates

Regression Weights: (Group number 1 - Default model)

	gitts: (droup	Estimate	S.E.	C.R.	P	Label
Y1	< X	.974	.299	3.260	.001	par_31
Y2	< Y1	.493	.117	4.227	***	par_29
Y3	< Y2	.651	.209	3.117	.002	par_30
X1.8	< X	1.532	.393	3.900	***	par_1
X1.9	< X	1.053	.368	2.865	.004	par_2
X1.10	< X	1.317	.337	3.908	***	par_3
X1.11	< X	.992	.314	3.155	.002	par_4
Y1.7	< Y1	.404	.136	2.968	.003	par_5
Y1.8	< Y1	.777	.180	4.324	***	par_6
Y1.11	< Y1	.797	.208	3.837	***	par_7
Y1.12	< Y1	1.146	.202	5.680	***	par_8
Y1.13	< Y1	1.144	.238	4.801	***	par_9
Y1.15	< Y1	.814	.153	5.301	***	par_10
Y3.1	< Y3	1.000				
Y3.2	< Y3	.889	.095	9.333	***	par_11
Y3.3	< Y3	.594	.125	4.754	***	par_12
Y3.4	< Y3	.316	.139	2.275	.023	par_13
Y3.5	< Y3	.619	.094	6.612	***	par_14
X1.18	< X	1.000				
X1.17	< X	.996	.295	3.373	***	par_15
X1.16	< X	1.607	.488	3.292	***	par_16
X1.15	< X	1.885	.622	3.033	.002	par_17
X1.14	< X	1.792	.586	3.060	.002	par_18
X1.13	< X	1.828	.665	2.748	.006	par_19
X1.12	< X	1.011	.496	2.038	.042	par_20
X1.4	< X	1.035	.309	3.355	***	par_21
X1.5	< X	.836	.349	2.393	.017	par_22
X1.6	< X	1.853	.571	3.247	.001	par_23
X1.7	< X	2.049	.591	3.469	***	par_24
Y1.17	< Y1	.953	.141	6.742	***	par_25
Y1.16	< Y1	1.000				
Y2.2	< Y2	1.000				
Y2.3	< Y2	.940	.144	6.541	***	par_26
Y2.1	< Y2	.693	.109	6.363	***	par_27
Y2.4	< Y2	.994	.165	6.040	***	par_28

Standardized Regression Weights: (Group number 1 - Default model)

		Estimate	Y3.5	<	Y3	.595
Y1	< X	.559	X1.18	<	X	.487
Y2	< Y1	.562	X1.17	<	X	.468
Y3	< Y2	.470	X1.16	<	X	.717
X1.8	< X	.752	X1.15	<	X	.848
X1.9	< X	.439	X1.14	<	X	.767
X1.10	< X	.541	X1.13	<	X	.802
X1.11	< X	.461	X1.12	<	X	.420
Y1.7	< Y1	.365	X1.4	<	X	.492
Y1.8	< Y1	.526	X1.5	<	X	.345
Y1.11	< Y1	.633	X1.6	<	X	.798
Y1.12	< Y1	.724	X1.7	<	X	.829
Y1.13	< Y1	.831	Y1.17	<	Y1	.678
Y1.15	< Y1	.752	Y1.16	<	Y1	.734
Y3.1	< Y3	.874	Y2.2	<	Y2	.791
Y3.2	< Y3	.852	Y2.3	<	Y2	.776
Y3.3	< Y3	.611	Y2.1	<	Y2	.606
Y3.4	< Y3	.495	Y2.4	<	Y2	.740

Variances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	PLabel
Z1	.089	.054	1.642	.101par_32
Z2	.185	.058	3.173	.002par_33
Z3	.142	.034	4.168	***par_34
Z4	.311	.060	5.147	***par_35
e4	.299	.037	8.085	***par_36
e5	.461	.052	8.798	***par_37
e6	.174	.026	6.599	***par_38
e7	.170	.027	6.285	***par_39
e8	.160	.020	7.966	***par_40
e9	.413	.050	8.196	***par_41
e10	.373	.043	8.621	***par_42
e11	.323	.038	8.485	***par_43
e12	.425	.053	7.962	***par_44
e13	.165	.025	6.582	***par_45
e14	.200	.024	8.208	***par_46
e15	.123	.019	6.373	***par_47
e16	.218	.027	7.916	***par_48

e25	.286	.033	8.682	***par_49
e26	.425	.047	9.011	***par_50
e29	.256	.032	7.910	***par_51
e30	.321	.041	7.771	***par_52
e31	.158	.029	5.523	***par_53
e33	.137	.020	6.728	***par_54
e34	.231	.033	7.110	***par_55
e35	.288	.041	6.990	***par_56
e38	.172	.022	7.878	***par_57
e39	.124	.022	5.744	***par_58
e40	.121	.020	6.104	***par_59
e41	.170	.026	6.523	***par_60
e42	.123	.030	4.044	***par_61
e43	.120	.025	4.779	***par_62
e44	.237	.029	8.179	***par_63
e45	.123	.023	5.451	***par_64
e46	.278	.038	7.411	***par_65
e17	.315	.038	8.249	***par_66
e18	.286	.036	7.993	***par_67

Modification Indices (Group number 1 - Default model) Covariances: (Group number 1 - Default model)

	M.I.	Par Change	e33 <>	e42	8.678	043
e17 <> e1	8 6.816	.066	e31 <>	e46	6.888	056
e45 <> e4	8.184	056	e31 <>	e45	6.111	040
e41 <> e4	5.196	033	e31 <>	e44	4.382	.039
e40 <> e4	3 4.871	.029	e31 <>	e38	4.990	.036
e40 <> e4	2 4.624	031	e31 <>	e35	8.744	066
e39 <> e4	6 8.824	053	e30 <>	e43	4.376	.040
e38 <> e4	6 8.787	.058	e29 <>	e43	5.773	041
e38 <> e3	5.182	.031	e29 <>	e40	5.148	.039
e35 <> e4	0 4.436	.040	e29 <>	e34	5.037	050
e34 <> e4	5 4.107	.037	e26 <>	e35	5.809	.072
e34 <> e3	5 4.629	.050	e26 <>	e34	4.730	059
e33 <> Z3	4.821	032	e25 <>	e29	4.291	.046
e33 <> e4	8.450	.055	e16 <>	e46	6.791	058

e16 <>	e33	5.295	.037
e15 <>	e33	4.128	027
e13 <>	e40	7.844	041
e12 <>	e40	8.998	.066
e12 <>	e35	4.413	068
e12 <>	e30	4.317	.067
e12 <>	e15	5.152	049
e12 <>	e13	12.186	.082

e11 <>	e44	4.614	050
e11 <>	e42	4.866	.044
e10 <>	e42	6.157	053
e10 <>	e41	4.243	.045
e10 <>	e33	7.187	054
e10 <>	e16	4.957	.053

			M.I.	Par Change
e9	<>	e18	6.805	077
e9	<>	e17	4.099	.061
e9	<>	e39	4.261	.044
e8	<>	e13	6.038	.037
e8	<>	e12	6.151	056
e6	<>	e30	4.518	046
e6	<>	e7	4.337	.032
e5	<>	Z2	4.739	.053
e5	<>	e45	4.012	047
e4	<>	e34	10.328	076
e4	<>	e33	7.996	.052
e4	<>	e15	5.478	.042
e4	<>	e11	4.753	057
e4	<>	e10	4.010	.056
e4	<>	e5	4.149	.062

 $\label{lem:condition} \mbox{ Variances: (Group number 1 - Default model) Regression Weights: (Group number 1 - Default model)}$

		M.I.	Par Change
X1.18 <	X1.17	5.396	.165
X1.18 <	Y1.8	4.012	.111
X1.18 <	X1.9	5.509	152
X1.17 <	X1.18	5.211	.176
Y3.5 <	Y3.4	6.267	348
Y3.5 <	Y2.1	7.302	.247
Y3.5 <	X1.9	4.077	.131
Y3.4 <	Y3.5	4.894	120
Y3.4 <	Y2.4	4.063	.107

Y3.4	<	Y2.1	4.819	.148
Y3.2	<	Y1.11	4.327	104
Y3.1	<	X1.11	5.270	.128
Y2.4	<	Y3.4	5.000	.244
Y2.4	<	X1.12	4.798	114
Y2.3	<	Y1.17	5.508	.106
Y2.3	<	Y1.11	6.335	.125
Y2.3	<	X1.12	9.125	.141

Y2.2 < Y3.5	8.796	146
Y2.2 < X1.9	4.927	.102
Y2.1 < Y3.5	6.952	.141
Y1.17 < Y3.4	4.837	319
Y1.17 < Y2.1	4.400	.201
Y1.17 < Y1.8	4.121	.120
Y1.16 < Y3.4	5.505	.307
Y1.16 < X1.11	4.216	139
Y1.16 < X1.4	9.503	209
Y1.15 < Y2.3	4.770	142
Y1.15 < Y2.1	5.652	160
Y1.15 < X1.10	4.872	100
Y1.15 < X1.4	5.993	.130
Y1.13 < Y3.5	5.998	142
Y1.13 < Y3.4	6.895	304
Y1.13 < Y2.1	4.453	.163
•		

Y1.11 < X1.11	4.440	143
X1.15 < X1.12	4.209	095
X1.15 < X1.4	4.128	.106
X1.13 < Y2.3	6.197	175
X1.13 < X1.12	10.683	.169
X1.12 < Y2.3	4.107	.215
X1.12 < Y1.17	4.504	164
X1.10 < Y1.15	5.398	207
X1.9 < X1.18	5.178	206
X1.9 < Y3.5	4.251	.168
X1.8 < X1.12	5.080	109
X1.5 < Y2.4	4.262	.179
X1.5 < Y1.16	4.755	.165
X1.5 < Y1.11	4.564	.176
X1.4 < Y1.16	4.111	132

Model Fit Summary CMIN

Model	NPAR	CMIN	DF	P	CMIN/DF
Default model	67	727.535	461	.000	1.578
Saturated model	528	.000	0		

Model	NPAR	CMIN	DF	P	CMIN/DF
Independence model	32	970.952	496	.000	1.958
Zero model	0	3664.000	528	.000	6.939

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.258	.801	.773	.700
Saturated model	.000	1.000		
Independence model	.369	.735	.718	.690
Zero model	.398	.000	.000	.000

Baseline Comparisons

Model	NFI I	RFI	IFI	TLI	CFI
	Delta1 i	rho1	Delta2	rho2	
Default model	.251	.194	.4	.77 <u>.396</u>	.439
Saturated model	1.000		1.0	00	1.000
Independence model	.000	.000	.0	00.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.929	.233	.408
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	266.535	197.127	343.871
Saturated model	.000	.000	.000
Independence model	474.952	390.359	567.328

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	3.177	1.164	.861	1.502
Saturated model	.000	.000	.000	.000
Independence model	4.240	2.074	1.705	2.477

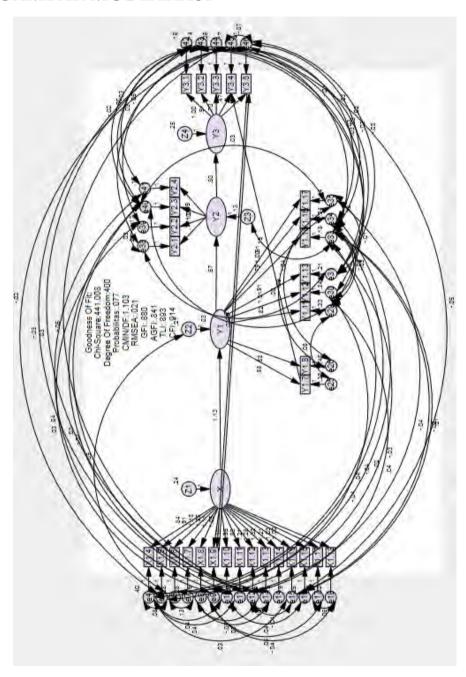
RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.050	.043	.057	.469
Independence model	.065	.059	.071	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	861.535	884.096	1091.886	1158.886

Model	AIC	BCC	BIC	CAIC
Saturated model	1056.000	1233.796	2871.306	3399.306
Independence model	1034.952	1045.728	1144.971	1176.971
Zero model	3664.000	3664.000	3664.000	3664.000


ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	3.762	3.459	4.100	3.861
Saturated model	4.611	4.611	4.611	5.388
Independence model	4.519	4.150	4.923	4.566
Zero model	16.000	15.178	16.854	16.000

HOELTER

Model	HOELTER .05	HOELTER .01
Default model	162	
Independence model	130) 135
Zero model	37	7 38

GAMBAR MODIFIKASI

OUTPUT MODIFIKASI MODEL

Analysis Summary Date and Time Date: Tuesday, December 25, 2018

Time: 12:13:54 AM

Title

Mod 7: Tuesday, December 25, 2018 12:13 AM

Notes for Group (Group number 1)

The model is nonrecursive. Sample size = 230

Variable Summary (Group number 1)

Your model contains the following variables (Group number 1)

Observed, endogenous variables

X1.4 X1.5 X1.6 X1.7 X1.8 X1.9 X1.10 X1.11 X1.12 X1.13 X1.14 X1.15 X1.16 Y1.7 Y1.8 Y1.11 Y1.12 Y1.13 Y1.15 Y1.16 Y1.17 Y2.1 Y2.2 Y2.3 Y2.4 Y3.1 Y3.2 Y3.3 Y3.4 Y3.5 X1.17 X1.18

Unobserved, endogenous variables X Y1 Y3 Y2

Unobserved, exogenous variables

e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e25 e26 e29 e30 e31 e33 e34 e35 e38 e39 e40 e41 e42 e43 e44 e45 e46 e17 e18 71 72 73 74

Variable counts (Group number 1)

Number of variables in your model 72. Number of observed variables 32 Number of unobserved variables 40 : Number of exogenous variables 36 Number of endogenous variables 36

Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments 528 Number of distinct parameters to be estimated: 128 Degrees of freedom (528 - 128) 400

Result (Default model) Minimum was achieved Chi-square = 441.008

Degrees of freedom = 400 Probability level = .077 Estimates (Group number 1 - Default model)

Scalar Estimates (Group number 1 - Default model)

Generalized Least Squares Estimates

Regression Weights: (Group number 1 - Default model)

ession weig	nts:	(Group nu	mber 1 - Defaul	S.E.	C.R.	P	Label
371		v	Estimate			***	
Y1 Y2	<	X Y1	1.128 .673	.161 .090	7.023 7.479	***	par_31 par_29
Y3		Y2	.804	.120	6.687	***	
X1.9		X	1.052	.218	4.828	***	par_30 par_2
Y3.5		Y3	.636	.083	7.649	***	par_2 par_14
Y1.7		Y1	.583	.003	5.940	***	par_14 par_5
X1.8		X	1.115	.173	6.461	***	
X1.0 X1.10		X	1.113	.173	6.047	***	par_1 par_3
X1.10 X1.11		X	.953	.179	5.332	***	par_3 par_4
Y1.8		Y1	.579	.104	5.575	***	par_4 par_6
Y1.11		Y1	.824	.103	8.013	***	par_5 par_7

Y1.12 Y1.13		Y1 Y1	1.013 .913	.112 .113	9.044 8.089	***	par_8 par_9
Y1.15		Y1	.789	.082	9.564	***	par_10
Y3.1		Y3	1.000	.002	7.301		par_10
Y3.2		Y3	.906	.069	13.215	***	par_11
Y3.3		Y3	.700	.105	6.674	***	par_12
Y3.4		Y3	.474	.107	4.445	***	par_13
X1.18		X	1.000	.10.			pu1_10
X1.17		X	1.029	.180	5.703	***	par_15
X1.16		X	1.206	.224	5.384	***	par_16
X1.15		X	1.316	.281	4.680	***	par_17
X1.14	<	X	1.284	.278	4.617	***	par_18
X1.13	<	X	1.212	.278	4.365	***	par_19
X1.12	<	X	.847	.217	3.911	***	par_20
X1.4	<	X	.844	.153	5.516	***	par_21
X1.5	<	X	.913	.182	5.025	***	par_22
X1.6	<	X	1.177	.220	5.360	***	par_23
X1.7	<	X	1.251	.218	5.734	***	par_24
Y1.17	<	Y1	.912	.093	9.781	***	par_25
Y1.16	<	Y1	1.000				
Y2.2	<	Y2	1.000				
Y2.3	<	Y2	1.103	.096	11.429	***	par_26
Y2.1	<	Y2	.768	.086	8.916	***	par_27
Y2.4	<	Y2	.995	.095	10.428	***	par_28
Y3.4	<	Y1.7	.194	.058	3.350	***	par_91
Y3.5	<	X1.9	.076	.084	.902	.367	par_90
X1.9	<	Y3.5	.125	.103	1.216	.224	par_92
L							

Standardized Regression Weights: (Group number 1 - Default model)

		Estimate		X1.17 <	X	.647
Y1 <	X	.775		X1.16 <	X	.764
Y2 <	Y1	.806		X1.15 <	X	.861
Y3 <	Y2	.696		X1.14 <	X	.823
X1.9 <	X	.584		X1.13 <	X	.766
Y3.5 <	Y3	.553		X1.12 <	X	.474
Y1.7 <	Y1	.588		X1.4 <	X	.551
X1.8 <	X	.810		X1.5 <	X	.511
X1.10 <	X	.633		X1.6 <	X	.736
X1.11 <	X	.621		X1.7 <	X	.756
Y1.8 <	Y1	.521		Y1.17 <	Y1	.703
Y1.11 <	Y1	.719		Y1.16 <	Y1	.778
Y1.12 <	Y1	.780		Y2.2 <	Y2	.827
Y1.13 <	Y1	.817		Y2.3 <	Y2	.864
Y1.15 <	Y1	.801		Y2.1 <	Y2	.711
Y3.1 <	Y3	.869		Y2.4 <	Y2	.808
Y3.2 <	Y3	.858		Y3.4 <	Y1.7	.243
Y3.3 <	Y3	.691		Y3.5 <	X1.9	.085
Y3.4 <	Y3	.577		X1.9 <	Y3.5	.112
X1.18 <	X	.657	L			

Covariances: (Group number 1 - Default model)

	(Estimate	S.E.	C.R.	P	Label
e17	<>	e18	.059	.029	2.016	.044	par_32
e45	<>	e46	066	.023	-2.916	.004	par_33
e41	<>	e43	028	.016	-1.759	.079	par_34
e40	<>	e43	005	.018	265	.791	par_35
e40	<>	e42	023	.019	-1.231	.218	par_36
e39	<>	e46	047	.021	-2.228	.026	par_37
e38	<>	e46	.026	.023	1.136	.256	par_38
e38	<>	e39	.031	.017	1.798	.072	par_39
e35	<>	e40	.034	.021	1.624	.104	par_40
e34	<>	e45	.026	.020	1.309	.190	par_41
e34	<>	e35	.123	.035	3.532	***	par_42
e33	<>	Z3	042	.016	-2.728	.006	par_43
e33	<>	e46	.021	.022	.969	.333	par_44
e33	<>	e42	013	.017	811	.417	par_45
e31	<>	e46	028	.025	-1.123	.262	par_46

e31 <> e44 .030 .022 1.352 .176 pa	ar_47 ar_48 ar_49 ar_50
	ar_49
e31 <> e38 .023 .018 1.289 .197 pa	_
	ır_50
e31 <> e35010 .025393 .694 pa	_
e30 <> e43 .026 .020 1.254 .210 pa	ar_51
e29 <> e43034 .019 -1.796 .073 pa	ar_52
e29 <> e40 .031 .019 1.637 .102 pa	ar_53
e29	ar_54
e26 <> e35 .094 .036 2.583 .010 pa	ar_55
e26	ar_56
e29 <> e25 .075 .026 2.854 .004 pa	ar_57
e16 <> e46053 .024 -2.171 .030 pa	ar_58
e16 <> e33 .012 .019 .667 .505 pa	ar_59
e15 <> e33023 .015 -1.564 .118 pa	ar_60
e13 <> e40038 .017 -2.167 .030 pa	ar_61
e12 <> e40 .027 .026 1.041 .298 pa	ar_62
e12 <> e35044 .034 -1.282 .200 pa	ar_63
e12 <> e30 .043 .034 1.269 .204 pa	ar_64
e12 <> e15044 .023 -1.882 .060 pa	ar_65
e12 <> e13 .104 .033 3.122 .002 pa	ar_66
e11 <> e44050 .024 -2.075 .038 pa	ar_67
e11 <> e42 .026 .021 1.197 .231 pa	ar_68
e10 <> e42034 .023 -1.455 .146 pa	ar_69

			Estimate	S.E.	C.R.	P	Label
e10	<>	e41	.039	.023	1.690	.091	par_70
e10	<>	e33	034	.023	-1.472	.141	par_71
e10	<>	e16	.037	.026	1.406	.160	par_72
e18	<>	e9	045	.032	-1.379	.168	par_73
e17	<>	e9	.056	.035	1.618	.106	par_74
e39	<>	e9	.031	.023	1.327	.185	par_75
e8	<>	e13	.028	.018	1.540	.123	par_76
e8	<>	e12	046	.026	-1.756	.079	par_77
e6	<>	e30	042	.023	-1.834	.067	par_78
e6	<>	e7	.126	.029	4.415	***	par_79
e5	<>	Z2	.093	.035	2.690	.007	par_80
e5	<>	e45	021	.025	834	.404	par_81

e5	<>	e34	.020	.031	.657	.511	par_82
e4	<>	e34	039	.027	-1.469	.142	par_83
e4	<>	e33	.042	.022	1.923	.054	par_84
e4	<>	e15	.035	.020	1.707	.088	par_85
e4	<>	e11	042	.027	-1.541	.123	par_86
e4	<>	e10	.035	.031	1.143	.253	par_87
e4	<>	e5	.078	.034	2.276	.023	par_88
e30	<>	e33	054	.021	-2.555	.011	par_89

Correlations: (Group number 1 - Default model)

Co	orrelati	ons: (Gr	oup nu	umber 1 - Defa	ult model)				
				Estimate		e29	<>	e40	.142
	e17	<>	e18	.176		e29	<>	e34	087
	e45	<>	e46	252		e26	<>	e35	.208
	e41	<>	e43	174		e26	<>	e34	012
	e40	<>	e43	034		e29	<>	e25	.230
	e40	<>	e42	153		e16	<>	e46	165
	e39	<>	e46	182		e16	<>	e33	.058
	e38	<>	e46	.091		e15	<>	e33	145
	e38	<>	e39	.169		e13	<>	e40	196
	e35	<>	e40	.135		e12	<>	e40	.090
	e34	<>	e45	.110		e12	<>	e35	085
	e34	<>	e35	.320		e12	<>	e30	.094
	e33	<>	Z3	282		e12	<>	e15	149
	e33	<>	e46	.079		e12	<>	e13	.267
	e33	<>	e42	081		e11	<>	e44	168
	e31	<>	e46	093		e11	<>	e42	.110
	e31	<>	e45	144		e10	<>	e42	129
	e31	<>	e44	.127		e10	<>	e41	.135
	e31	<>	e38	.110		e10	<>	e33	120
	e31	<>	e35	032		e10	<>	e16	.111
	e30	<>	e43	.117		e18	<>	e9	116
	e29	<>	e43	157		e17	<>	e9	.137
				I	I				l l

e39	<>	e9	.110	e4	<>	e34	108
e8	<>	e13	.138	e4	<>	e33	.158
e8	<>	e12	149	e4	<>	e15	.144
e6	<>	e30	136	e4	<>	e11	113
e6	<>	e7	.443	e4	<>	e10	.084
e5	<>	Z2	.271	e4	<>	e5	.163
e5	<>	e45	068	e30	<>	e33	219
e5	<>	e34	.046				

Variances: (Group number 1 - Default model)

	Estimate	S.E.	C.R.	P	Label
Z1	.243	.093	2.596	.009	par_93
Z2	.206	.049	4.205	***	par_94
Z3	.126	.025	5.087	***	par_95
Z4	.246	.054	4.557	***	par_96
e9	.471	.055	8.545	***	par_97
e46	.408	.043	9.541	***	par_98
e25	.330	.037	8.945	***	par_99
e4	.398	.043	9.255	***	par_100
e5	.571	.061	9.405	***	par_101
e6	.284	.035	8.093	***	par_102
e7	.284	.035	8.120	***	par_103
e8	.158	.022	7.230	***	par_104
e10	.442	.047	9.328	***	par_105
e11	.351	.039	8.925	***	par_106
e12	.600	.063	9.537	***	par_107
e13	.252	.030	8.450	***	par_108
e14	.191	.025	7.784	***	par_109
e15	.146	.020	7.185	***	par_110
e16	.251	.030	8.486	***	par_111

e26	.464	.049	9.512	***	par_112
e29	.326	.036	8.943	***	par_113
e30	.341	.043	7.920	***	par_114
e31	.214	.028	7.511	***	par_115
e33	.179	.023	7.798	***	par_116
e34	.336	.040	8.443	***	par_117
e35	.439	.052	8.415	***	par_118
e38	.207	.025	8.237	***	par_119
e39	.166	.022	7.414	***	par_120
e40	.148	.023	6.387	***	par_121
e41	.189	.025	7.708	***	par_122
e42	.155	.027	5.705	***	par_123
e43	.140	.024	5.966	***	par_124
e44	.256	.030	8.493	***	par_125
e45	.167	.023	7.139	***	par_126
e17	.357	.043	8.353	***	par_127
e18	.319	.038	8.314	***	par_128

 $\label{lem:model} \mbox{Modification Indices (Group number 1 - Default model) Covariances: (Group number 1 - Default model)}$

M.I. Par Change

Variances: (Group number 1 - Default model) Regression Weights: (Group number 1 - Default model)

	M.I.	Par Change
--	------	------------

	M.I.	Par Change
Y2.4 < X1.14	4.094	089
Y2.4 < X1.11	4.554	098
Y2.4 < X1.8	4.080	103

Model Fit Summary CMIN

_						
	Model	NPAR	CMIN	DF	P	CMIN/DF
	Default model	128	441.008	400	.077	1.103
	Saturated model	528	.000	0		
	Independence model	32	970.952	496	.000	1.958
	Zero model	0	3664.000	528	.000	6.939

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.127	.880	.841	.666
Saturated model	.000	1.000		
Independence model	.369	.735	.718	.690
Zero model	.398	.000	.000	.000

Baseline Comparisons

Dascille Collipatisons					
Model	NFI Delta1	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.546	.437	.928	<u>.893</u>	.914
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.806	.440	.737
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	41.008	.000	96.281
Saturated model	.000	.000	.000
Independence model	474.952	390.359	567.328

FMIN

Model	FMIN	F0	LO 90	HI 90
Default model	1.926	.179	.000	.420
Saturated model	.000	.000	.000	.000
Independence model	4.240	2.074	1.705	2.477

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.021	.000	.032	1.000
Independence model	.065	.059	.071	.000

AIC

Model	AIC	BCC	BIC	CAIC
Default model	697.008	740.110	1137.082	1265.082
Saturated model	1056.000	1233.796	2871.306	3399.306
Independence model	1034.952	1045.728	1144.971	1176.971
Zero model	3664.000	3664.000	3664.000	3664.000

ECVI

Model	ECVI	LO 90	HI 90	MECVI
Default model	3.044	2.865	3.285	3.232
Saturated model	4.611	4.611	4.611	5.388
Independence model	4.519	4.150	4.923	4.566
Zero model	16.000	15.178	16.854	16.000

HOELTER

Model	HOELTER .05	HOELTER .01
Default model	233	244
Independence model	130	135
Zero model	37	38

Tabel Statistik Untuk Distribusi t

Df	t 0,10	t 0,05	t 0,025	t 0,01	t 0,005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
31	1.309	1.696	2.040	2.453	2.744
32	1.309	1.694	2.037	2.449	2.738
33	1.308	1.692	2.035	2.445	2.733
34	1.307	1.691	2.032	2.441	2.728
35	1.306	1.690	2.030	2.438	2.724
36	1.306	1.688	2.028	2.434	2.719
37	1.305	1.687	2.026	2.431	2.715
38	1.304	1.686	2.024	2.429	2.712
39	1.304	1.685	2.023	2.426	2.708
40	1.303	1.684	2.021	2.423	2.704
41	1.303	1.683	2.020	2.421 2.418	2.701 2.698
42	1.302	1.682	2.018 2.017	_	2.698
43	1.302	1.681		2.416	
44	1.301	1.680	2.015	2.414	2.692

1 45	1 201	1.670	2.014	1 2442 1	2.600
45	1.301	1.679	2.014	2.412	2.690
46	1.300	1.679	2.013	2.410	2.687
47	1.300	1.678	2.012	2.408	2.685
48	1.299	1.677	2.011	2.407	2.682
49	1.299	1.677	2.010	2.405	2.680
50	1.299	1.676	2.009	2.403	2.678
51	1.298	1.675	2.008	2.402	2.676
52	1.298	1.675	2.007	2.400	2.674
53	1.298	1.674	2.006	2.399	2.672
54	1.297	1.674	2.005	2.397	2.670
55	1.297	1.673	2.004	2.396	2.668
56	1.297	1.673	2.003	2.395	2.667
57	1.297	1.672	2.002	2.394	2.665
58	1.296	1.672	2.002	2.392	2.663
59	1.296	1.671	2.001	2.391	2.662
60	1.296	1.671	2.000	2.390	2.660
61	1.296	1.670	2.000	2.389	2.659
62	1.295	1.670	1.999	2.388	2.657
63	1.295	1.669	1.998	2.387	2.656
64	1.295	1.669	1.998	2.386	2.655
65	1.295	1.669	1.997	2.385	2.654
66	1.295	1.668	1.997	2.384	2.652
67	1.294	1.668	1.996	2.383	2.651
68	1.294	1.668	1.995	2.382	2.650
69	1.294	1.667	1.995	2.382	2.649
70	1.294	1.667	1.994	2.381	2.648
71	1.294	1.667	1.994	2.380	2.647
72	1.293	1.666	1.993	2.379	2.646
73	1.293	1.666	1.993	2.379	2.645
74	1.293	1.666	1.993	2.378	2.644
75	1.293	1.665	1.992	2.377	2.643
76	1.293	1.665	1.992	2.376	2.642
77	1.293	1.665	1.991	2.376	2.641
78	1.292	1.665	1.991	2.375	2.640
79	1.292	1.664	1.990	2.374	2.640
80	1.292	1.664	1.990	2.374	2.639
81	1.292	1.664	1.990	2.373	2.638
82	1.292	1.664	1.989	2.373	2.637
83	1.292	1.663	1.989	2.372	2.636
84	1.292	1.663	1.989	2.372	2.636
85	1.292	1.663	1.988	2.371	2.635
86	1.291	1.663	1.988	2.370	2.634
87	1.291	1.663	1.988	2.370	2.634
88	1.291	1.662	1.987	2.369	2.633
89	1.291	1.662	1.987	2.369	2.632
90	1.291	1.662	1.987	2.368	2.632
91	1.291	1.662	1.986	2.368	2.631

92	1.291	1.662	1.986	2.368	2.630
93	1.291	1.661	1.986	2.367	2.630
94	1.291	1.661	1.986	2.367	2.629
95	1.291	1.661	1.985	2.366	2.629
96	1.290	1.661	1.985	2.366	2.628
97	1.290	1.661	1.985	2.365	2.627
98	1.290	1.661	1.984	2.365	2.627
99	1.290	1.660	1.984	2.365	2.626
100	1.290	1.660	1.984	2.364	2.626
101	1.290	1.660	1.984	2.364	2.625
102	1.290	1.660	1.983	2.363	2.625
103	1.290	1.660	1.983	2.363	2.624
104	1.290	1.660	1.983	2.363	2.624
105	1.290	1.659	1.983	2.362	2.623
106	1.290	1.659	1.983	2.362	2.623
107	1.290	1.659	1.982	2.362	2.623
108	1.289	1.659	1.982	2.361	2.622
109	1.289	1.659	1.982	2.361	2.622
110	1.289	1.659	1.982	2.361	2.621
111	1.289	1.659	1.982	2.360	2.621
112	1.289	1.659	1.981	2.360	2.620