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Abstract

The concern associated with the depletion of fossil fuel energy has opened up windows of
opportunity for researchers to develop potential energy from renewable resources. The
renewable green diesel with diesel range hydrocarbon structure has gained increasing
popularity by removing oxygen molecule via direct or hydrodeoxygenation (HDO) and
indirect or deoxygenation (DO) reaction. The catalyst design is an important key to achieve
the high quality of diesel range hydrocarbon fuels. The different catalyst properties effect to
the distribution of deoxygenated liquid product, the catalytic activity and coke formation
during the reaction process. The interaction between metal and support catalyst causes
eldfbn transfer to give the synestistic effect. The acidity and basicity play importantffble
in C-C and C-O breaking bond in triglyceridcmd prevent the coke formation. The pore
structure and pore size catalyst provide the accessibility of active sites alleviates the
diffusion limitation of reactants/ products.
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Introduction Misra, 2017). Moreover, biodiesel
The deficiency of fossil fuel, exhibited poor cold-flow properties which
increasing of the energy demand and the can cause serious problems in
environmental issue have been attracted conventional engine. Recently, green
the global attention for developing the diesel with diesel range hydrocarbon
renewable energy. Plant biomass are structure  have been expanded to
generally used in many studies as a overcome the detriment of biodiesel. The
feedstock to produce renewable biofuels. renewable green diesel was obtained by
Lately, the first generation biofuels removing oxygen molecule via direct or
known as biodiesel have been developed hydrodeoxygenation (HDO) and indirect
(Kamalmman et al., 2020). Biodiesel or deoxygenation (DO) reaction.
mainly consist of fatty acid methyl esters However, HDO reaction consumed a
(FAME) that formed by vegetable oil large amount of H» which is not
transesterification (Choo et al., 2020). economically for industrial process.
Regrettably, the high oxygen contents in Alternatively, deoxygenation reaction can
FAME lead the biodiesel produced be regarded as very attractive with
vulnerable to oxidation, lower its heat simultaneous advantage ofm additional
content and heaalg value (HV) (Alsultan H> consumption during the process.
etal.,2017; Hu et al.,2019; Pattanaik and
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In deoxygenation reaction, green diesel
is produced mainly via decarboxylation/-
decarbonylation (deCOx) reactions under
H> or inert (H>free) atmosphere.
Afterwards, oxygenates were removed
from all fatty acid intermediates (C¢ and
Cis) present in the vegetable oil or model
compound to form COz, CO and H20 as
by product. Consequently, saturated and
unsaturated hydrocarbon were produced
with the carbon number reduced by one
(Cis and Cy7) from the parent fatty acid
(Silva et al.,2018).

Catalyst design is an important key to
achieve the high quality of diesel range
hydrocarbon fuels. The catalyst for
deoxygenation reaction should be active
and selective to the formation of diesel
range-hydrocarbon fractions.
Undoubtedly catalyst support is crucial
for enhancing the deoxygenation activity
and product selectivity. Several catalyst
support have been explored in
deoxygenation reaction including
activated carbon (Safa Gamal et al.,
2019), multi walled carbon nanotube
(MWCNT) (Popov and Kumar, 2015),
mesoporous SiO»> (Zheng al., 2019),
mesoporous TiO> (Oi et al, 2020;
Hengsawad et al., 2), Zr0O» (Miao et
al., 2016), CaO (N. Asikin-M et al.,
2017),ALO3 (Loe et al.,2016), AI-MCM-
41 (Zhao et al., 2017), SBA-15
(Baharudin, Taufig-Yap, er al., 2019),
ZIF-67 (Yang and Carreon, 2017) and
zeolites (Sousa et al., 2018; Choo et al.,
2020). Among aqe, aluminosilicates-
based support such as =zeolites and
mesoporous alumina/silica were the most
promising candidates in deoxygenation
reaction because eir porosity-acidity
interplay (Gomez etal.,2018; Xing et al.,
2018a; Zulkepli et al.,2018). The porosity
and surface area plays important role in
reactant and product diffusion in active
sites catalyst. Puértolas et al also observed
an outstanding decarbonylation reaction
over hierarchical ZSM-5  zeolites
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(Puértolas et al., 2016) and gcstccl due
to interplay between large Brensted acid
sites at the mesopore surface (Veses et al.,
2016). Noted, the acid properties also
gives the important part in the formation
of diesel range hydrocarbon fuels.
Meanwhile, as reported by Gosselink et
al., (2013) basicity in catalyst played an
crucial role in repressing the formation of
coke along with promotion towards C-O
cleavage  through  decarboxylation
reaction. Concurrently, acidity is required
to stimulate the C-C breaking during DO
reaction (Hermida et al., 2015).

Deoxygenation Reaction

Deoxygenation reaction is one of the
alternative diesel range hydrocarbon fuels
(green diesel) by oxygen removal from
carboxylic group in fatty acid using solid
catalyst (Hermida et al., 2015).
Deoxygenation reaction of fatty acid with
hydrogen occur via direct (H atmosphere,
hydrodeoxygenation  reaction)  and
indirect route (inert atmosphere). The
hydrodeoxygenation reaction (HDO) will
produce paraffin hydrocarbon and H>O.
The reaction pathway of fatty acid
deoxygenation reaction includes liquid
and gas phase reacfih (Figure 1). In
liquid phase, the hydrodeoxygenation
(HDO), decarbonylation (DCO)
decarboxylation (DCO2), and @&
hydrogenation reaction occurs. In gas
phase, the methanation and water gas shift
reaction will produce CH4, Ha, CO» gas
and H,O.

1. Hydrodeoxygenation reaction (HDO)

The HDO reaction involves the
interaction between the reactant, catalyst
and hydrogen during the reaction process
at high temperature and pressure
(Pattanaik and Misra, 2017).

R—COOH +3H, »R—CHs +2H,0 (1)
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Figure 1. Proposed deoxygenation reaction under H» and inert atmosphere (Xing et al.,

2018)

2. Decarboxylation c.rirm (DCO:2)
Decarboxylation reaction is the typical
deoxygenation process that removes
oxygen in the form o 2 and produce
saturated hydrocarbon through direct C-C
bond cleavage under mild conditions (Ooi
etal.,2019).
R—COOH - R—H + (0, (2)
3. Decarbonylation reaction (DCO)
The decarfffhylation reaction release
oxygen from carboxyl groups by remove
carbon monoxide and water molecules to

produce alkenes/unsaturated hydrocarbon
(Hermida et al., 2015).

R—COOH - R'—CH =CH, + CO + H,0
3)

4. Dehydrogenation and hydrogenation
reaction
Hydrogenation reactions involve the
breaking bonds in the aturated carbon
chains of fatty acids in the presence of
hydrogen (Hermida et al., 2015). In
contrary, the dehydrogenation reaction
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release H2 gas due to a cracking reaction

or the formation of unsaturated
hydrocarbons.
Hydrogenation
R—COOH + H, - R' — COOH )
Dehydrogenation

—COOH - R—COOH + H, (5)

R= unsaturated hydrocarbon
R’=saturated hydrocarbon

5. Methanation reaction

The methanation reaction is a reaction
to the formation of methane gas. The CO
and CO: gases produced in the
deoxygenation reaction can react with H
to produces methane gas. This reaction is
reversible.

CO+3H, & CH,+ H,0 (6)

C0, +4H, & CH, + 2H,0 (7)

83




R. E. Nugraha, et al.
6. Water Gas Shift (WGS) reaction

The The WGS reaction involve the
reaction between CO gas and water to
produce H> and CO> gases. This reaction
is reversible.

CO+H,0 & H,+CO, (8)

Cafilyst Design

The development of highly active,
selective and stable catalyst with high
reusability are  some  important
requirements of catalyst that can be used
for deoxygenation reaction of vegetable
oil. Previously, the researchers used the
simple molecule of fatty acid or
triglyceride to represent the compound
contained in vegetable oil. The fatty acid
and  triglyceride that used in
deoxygenation reaction called as model
compound. The use of model compound
in deoxygenation reactions will make it
easier for researchers to examine the
mechanism of the reaction that occurs.

The catalyst design plays an important
factor that needs to be considered before
being applied in a chemical refglion. In
the deoxygenation reaction, the pore size,
surface area, the number of acidic/basic
sites and the presence of alkaline metals
are important factors which influence the
catalytic activity of long-straight chain
hydrocarbon fuels. Nowadays, various
types and modifications of catalysts have
E3n developed to increase the catalytic
activity and selectivity in deoxygenation
reactions.

The catalyst used in deoxygenation
reaction can be classified to 3 group:
metal/metal  oxide, support and
metal/metal oxide-support. Modification
of metal to form bimetallic catalyst and
aetal/metal oxide-support catalyst also

s been studied to enhance the
performance of catalytic  activity
deoxygenation reaction (Loe et al., 2016;
Miao et al., 2016). Metal/metal oxide that
already used in deoxygenation reaction
are Cu, W, Co, Ni, Li, Cs, Sn, Mg, Co-Ni,
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Ni-Cu, Co-Ca, Pt, NiMo, Fe:0s, WOs,
PdSn, Zn0O, ZrO>, Ca0, NiO and La>0Os.
Meanwhile, for the support that already
used for deoxygenation -catalyst are
porous material such as SiO;, ITQ-2,
MCM-2, AlLO;, AC, MWCNT, SiO;-
AlO3, MCM-41, SAPO-11 and SBA-15,
zeolit beta, ZSM-5, USY, LSX, NaX and
MOFs (Kubic'ka and Kubic'kova“, 2010;
Qian et al., 2014; Xing et al., 2018).

Catalyst Properties in Deoxygenation
Reaction 41

The choice of catalyst plays an
important role in the deoxygenation
reaction in order to obfin high conversion
and high selectivity in the formation of
long chain hydrocarbons fuels. The
interaction of metals with the catalyst
support, acid strength, basicity of the
catalyst, porosity, particle size and surface
area are some of the catalyst properties
that can affect catalytic activity in
deoxygenation reactions (Table 1).

Interaction of metal and catalyst
support

The interaction between the metal and
the support catalyst can be analyzed using
Temperature Programmed Reduction (H;-
TPR) instrument. Catalysts with different
supports will show different TR profiles
which indicate the different interaction
between the metal and the support
catalyst. Kubicka et al., (2014) have
studied using three different support
catalysts of TiO., SiO> and AlO; with
impregnated NiMo metal. The interaction
betweeen metal and the support catalyst
will affect the size of the metal. The TPR
profile of NiMo/TiO> shows a lower
reduction temperature compared with
SiO; and Al>Os which indicates the weak
metal interaction with the catalyst
support. The weak interaction between
metal and support catalyst will reduce the
catalytic activity in deoxygenation
reaction and decrease the selectivity of n-
C\7+18 hydrocarbon.
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The synergy between the support
catalyst and the active site can also cause
a synergistic effect. This synerggftic effect
causes the transfer of electrons from Ni to
Mo on the surface synergetic oxy
vacancy (SSOV) which can prevent the
formation of coke on catalyst surface (Hu
al., 2019). Schematic representation of
Ni and Mo species before and after
reduction is shown in Figure 2. Figure 2
(al and a2) describes the formation of
surface vacancy oxygen (SVO) from Mo-
o-Mo after the catalyst reduction step.
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Figure 2. Schematic representation
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Figure 2 (bl and b2) shows the formation
of Ni attached to the catalyst surface after
reduction of the Ni/A precursor using Ha.
Figure 2 (c1 and c2) shows that bimetallic
catalysts such as NiMo-A will form Ni-O-
Mo spe@®s which will produce surface
synergy oxygen vacancy (SSOV) of Ni-o-
0 after the reduction process. The
synergistic effect between bimetallic
catalysts and support could contribute
new insight to the construct of new
catalysts to improve better catalytic
performance in deoxygenation reaction.
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precursor, (a2) Mo/A catalyst, (bl) Ni/A precursor, (b2) Ni/A catalyst, (c1) NiMo/A

precursor, (c2) NiMo/A catalyst (Hu et al.,

49

Acidity of c.atalyst

The acidity of the catalyst acts as the
active site of the catalyst which can break
the C-C bond of triglyceride infEEle
deoxygenation reaction. Catalyst with
high acidity were noted to enhance C-O
hydrogenolysis reaction and improve the
selectivity of HDO products (Lup et al.,
2017). Catalyst support with large pore
and surface area will provide place for
metal impregnation. The good nfEE}!
dispersion on catalyst surface will
increase the number of acid active sites.
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2019)

The research conducted by Kubicka et
al., (20 showed that the NiMo/SiO2
catalyst had the highest number of acid
sites compared to Al>Os and TiO». Asikin-

mijan et al., (2018) synthesized a
bifuncal catalyst NiO-CaO/SiOs-

Al,O3 1n the deoxygenation reaction of
triolein. The results showed that among
the weak, medium and strong acid sites, a
catalyst with a medium-weak acid site
was the most suitable for the
decarboxylation-decarbonylation reaction
Strong acid sites will encourage cracking
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reactions to produce molecules with short
carbon chains hydrocarbon.

100

& B Octyl octanoate
o O Iso + n-octane
= 80 4_ B n-heptane
o | @ Octanol
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Figure 3. Product selectivity in octanoic
acid hydrodeoxygenation over Ni/Al-
catalysts as a function of acid site loading

(Baharudin et al., 2019)

Therefore, the Lewis acid is an
important  fafr in deoxygenation
reaction. The reducible oxide supports
containing Lewis acid sites such as Cr.0s,
Zr0s, CeO; and TiO» are able to reduce
the content of carboxylic acids to
aldehyde (Rogers and Zheng, 2016). The
Lewis acifififites have the capability to
minimize carboxylic acids to aldehydes
content and fFH-O by  oxygen
chemisorption in carboxylic acid on
catalyst surface a-H abstraction.
Meanwhile, the Bronsted acids was
correspond to cracking capability and
hydrogen transfer reactions (Wang et al.,
2019b). As reported in previous study by
@arudin, et al., (2019) in Figure 3,
Lewis acids are also observed to promote
deoxygenation reaction via
decarboxylation pathways to produce n-
heptane. Furthermore, the incrcase
Brgnsted acidity will increase the
selectivity of octyl oc@ate as by-
product of esterification and is constant
for samples with Si: Al < 75. Furthermore,
as reported in our previous study, the
increasing of Lewis acid sites by NiO
impregnation enhance the catalytic
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40

gwcrsion of vegetable oil in to diesel-
range hydrocarbon (Nugraha, et al.,
2021)and Bransted acid correlated to
cracking activity and hydrogen transfer
reaction (Wang et al., 2019).

Basicity of catalyst

As reported in previous studies,
basicity characteristic is important to
prevent the coke formation during the
¢EFxygenation reaction process
(Santillan-jimenez et al., 2013). Asikin-
mijan et al., (2018) synthesized bi-
functional catalyst NiO-Ca0Q/Si0,-A1,03
for deoxygenation reaction of triolein.
The results shows that basicity properties
played an crucial role in repressing the
formation of coke together with
promotion against C-O cleavage via
decarboxylation reaction (Gosselink et
al., 2013), meanwhile acidity is needed to
provoke the C-C cleavage along DO
reaction (Hermida et al., 2015). In similar
Efldy reported the basicity and conversion
increased in the order Fe-CaO<Ni-CaO<
Co-CaO< Zn-CaO (N. Asikinfffijan et
al., 2017). Incorporation of acid-base
effect of Co-CaO and W-CaO were favour
for the cracking and decarboxylation/-
decarbonylation (deCOx) reactions to
fEbduce Cs.17 hydrocarbons as majority
product.

Reangchim et al., (2019) studied the
mechanism of preventing coke formation
on alkaline Sn catalyst. An illustration of
the interaction of carbon atoms with the
catalyst sfce Ni and Sn is shown in
Figure 4. On the surface of the Ni (111)
catalyst, the value of Euq, = -6.99 indicates
a strong chemisorption between carbon
and Ni. Meanwhile, NizSn/Ni (111)
showed lower Eus. The bond distance
between carbon atoms and 3 Ni atoms is
1.8 A and the distance between Ni and Sn
is 298 A. This result shows that the
chemisorption of carbon atoms is easier
on Ni atoms than on Sn atoms or around
Sn atoms. In Ni2Sn/Ni (111), the
chemisorption of carbon atoms is on the
bridge between Nil and Ni2 atoms with
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lower adsorption energy. These results
indicate that the chemisorption of carbon
is favored on the Ni atom and avoids the
Sn (I:Eic metal) atom or its surroundings.
The interaction between carbon and the
catalyst surface will decrease in the

R0 3

Ni(111)
E,us = -6.99 eV

‘ JC
AR iﬁﬁﬁ =

0.25 MLE NiSn
E,4s = -6.24 eV

Jurnal Kimia Riset, Volume 7 No. 1, Juni 2022 81 -93

presence of Sn metal. This result proves
the catalytic study in deoxygenation
reaction which basic metal will reduce the
formation of coke and increase the

deoxygenated liquid product.

0.33 MLE NiSn
E, = -5.12 eV

Figure 4. Top and side views of the most stable configurations of C atom on (a) Ni(111),

(b) 0.25 MLE NiSn (Reangchim et al., 2019)

1
gore structure and pore size catalyst
The pore structure and pore size
catalyst was investigated by Lee et al.,
(2020) from SiO2 microporous to
mesoporous KIT-6, SBA-16 and SBA-15.
The different structure of SBA-15 with
two-dimensional ~ pébmm  symmetry
hexagonal cy]n:lrical pores, SBA-16
with cubic cage-like pores Im3m
symmetry, and KIT-6 of gyroid cubic
Ia3d with large-pores give influence in
xygenation of methyl palmitate. The
pore volume and pore size obtained were
1.00 em?/g and 6.8 nm for SBA-15,0.76
cm’/g and 3.9 nm for SBA-16,0.98 cm™/g
and 6.4 nm for KIT-6. Meanwhile for
microporous SiO: [lives 0.24 cm/g for
pore volume and very low intensity in
mesopore pore size distribution. The
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fllaximum yield of Cis.16 hydrocarbon of

735% with the minimum yield of
palmitic acid of 3.7% was achieved by Ni
impregnated on SBlS. The increasing
of catalytic activity can be contributed to
the evidence that the mesoporous SBA-15
mitigate the diffusion restriction of
reactants/products and enhance the active
sites accessibility (Shi et al., 2017). The
diffusion restriction can be lessened in the
order of cage-like structure SBA-16
>SBA-15 with parallel mesopore route >
interconnected cubic structure from KIT-
6.

The similar study was investigated by
Oh et al., (2022) by using Pt/Al2O3 with
the pore size range of 3.3-28.6 nm. The
effect of catalyst pore size was examined
in deoxygenation of soybean oil.
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Figure 5. The liquid hydrocarbon yield distribution after 2 h reaction at 633 K in the

function of pore size (Oh et al.,2022)

As depicted in Figure 5, the pore size of
catalyst affects to the liquid hydrocarbon
distribution and formation of nCs.is
hydrocarbon. The large mesopores (pore
diameter > ~12 nm) were crucial to
achieve mum catalytic activity,
reduce the mass transfer limitation and
su ss catalyst deactivation. Catalyst
Pt/Al,O3 with extra-large mesopores of
28.6 nm in diameter gives the highest
deoxygenation activity and selectivity to
the formation of diesel range
hydrocarbon. The higher pore size of
catalyst also decreases the oxygenates
species which declare the oxygen removal
from carboxylic acid in triglyceride is the
main route in deoxygenation reaction.
Noteworthy to mention, the heavy
products yield which are formed by the
oligomerization of unsaturated fatty acid
units also gradually decreased with
increasing pore size.

Future Perspective

The production of diesel-range
hydrocarbon fuels from vegetable oil and
model compound highly relatable with
catalyst properties. The catalyst properties
dis@sed in this paper have their own role
in catalytic deoxygenation reaction. The
enhancement of conversion  and
selectivity towards diesel-range
hydrocarbon influenced by the Lewis
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acidity, high mesoporous surface area,
and diameter. However, the use of acid-
based catalyst may lead to the coke
formation. Taking this into consideration,
the use of bifunctional catalyst consist of
acid-base active sites will be beneficial to
produce high quality of diesel-range
hydrocarbon fuels.

Conclusion

Deoxygenation of vegetable oils using
supported metal catalyst to produce
diesel-range hydrocarbon or green diesel
are a promising alternative for advances
renewable energy resources in the future.
Hydrodeoxygenation,  decarboxylation
and decarbonylation are major reaction
pathways for deoxygenation process. The
key process to obtain highest catalytic
activity in deoxygenation is the catalyst
design. Small particle metal incorporated
on mesoporous materials with medium-
large pore and high surface area are
recommended catalystsmr vegetable oil
€E) model compound deoxygenation to
produce high yield or selectivity of diesel
range hydrocarbons.

The catalyst design with desired
properties is the important key to
maximize the product yield in
deoxygenation reaction. The interaction
between the active site and the support
catalyst can also cause a synergistic effect
which  improve  better  catalytic
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performance in deoxygenation reaction.
The acidity catalyst plays important role
in breaking C-C bond in triglyceride and
C-O hydrogenolysis reaction to enhance
the selectivity of deoxygenated products.
Meanwhile, basicity is important for
inhibiting the coke formation during the
deoxygenation reaction process. The pore
structure and pore size catalyst provide
the accessibility of active sites alleviates
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